Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium.
Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium.
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2203660119. doi: 10.1073/pnas.2203660119. Epub 2022 Jul 19.
Structures trapping a variety of functional and conformational states of HIV-1 reverse transcriptase (RT) have been determined by X-ray crystallography. These structures have played important roles in explaining the mechanisms of catalysis, inhibition, and drug resistance and in driving drug design. However, structures of several desired complexes of RT could not be obtained even after many crystallization or crystal soaking experiments. The ternary complexes of doravirine and rilpivirine with RT/DNA are such examples. Structural study of HIV-1 RT by single-particle cryo-electron microscopy (cryo-EM) has been challenging due to the enzyme's relatively smaller size and higher flexibility. We optimized a protocol for rapid structure determination of RT complexes by cryo-EM and determined six structures of wild-type and E138K/M184I mutant RT/DNA in complexes with the nonnucleoside inhibitors rilpivirine, doravirine, and nevirapine. RT/DNA/rilpivirine and RT/DNA/doravirine complexes have structural differences between them and differ from the typical conformation of nonnucleoside RT inhibitor (NNRTI)-bound RT/double-stranded DNA (dsDNA), RT/RNA-DNA, and RT/dsRNA complexes; the primer grip in RT/DNA/doravirine and the YMDD motif in RT/DNA/rilpivirine have large shifts. The DNA primer 3'-end in the doravirine-bound structure is positioned at the active site, but the complex is in a nonproductive state. In the mutant RT/DNA/rilpivirine structure, I184 is stacked with the DNA such that their relative positioning can influence rilpivirine in the pocket. Simultaneously, E138K mutation opens the NNRTI-binding pocket entrance, potentially contributing to a faster rate of rilpivirine dissociation by E138K/M184I mutant RT, as reported by an earlier kinetic study. These structural differences have implications for understanding molecular mechanisms of drug resistance and for drug design.
通过 X 射线晶体学已经确定了多种 HIV-1 逆转录酶(RT)的功能和构象状态的结构。这些结构在解释催化、抑制和耐药机制以及推动药物设计方面发挥了重要作用。然而,即使经过多次结晶或晶体浸泡实验,也无法获得 RT 的几个所需复合物的结构。多拉韦林和利匹韦林与 RT/DNA 的三元复合物就是这样的例子。由于酶的相对较小尺寸和较高的灵活性,使用单颗粒冷冻电子显微镜(cryo-EM)对 HIV-1 RT 进行结构研究具有挑战性。我们优化了一种通过 cryo-EM 快速确定 RT 复合物结构的方案,并确定了野生型和 E138K/M184I 突变 RT/DNA 与非核苷抑制剂利匹韦林、多拉韦林和奈韦拉平复合物的六个结构。RT/DNA/利匹韦林和 RT/DNA/多拉韦林复合物之间存在结构差异,与非核苷 RT 抑制剂(NNRTI)结合的 RT/双链 DNA(dsDNA)、RT/RNA-DNA 和 RT/dsRNA 复合物的典型构象不同;RT/DNA/多拉韦林中的引物夹和 RT/DNA/利匹韦林中的 YMDD 基序有较大的位移。在结合多拉韦林的结构中,引物 3'-末端位于活性部位,但复合物处于非生产状态。在突变 RT/DNA/利匹韦林结构中,I184 与 DNA 堆叠,其相对位置可能会影响口袋中的利匹韦林。同时,E138K 突变打开了 NNRTI 结合口袋入口,如早期的动力学研究报道,这可能导致 E138K/M184I 突变 RT 更快地解离利匹韦林。这些结构差异对理解耐药的分子机制和药物设计具有重要意义。