van Veen Hans, Vashisht Divya, Akman Melis, Girke Thomas, Mustroph Angelika, Reinen Emilie, Hartman Sjon, Kooiker Maarten, van Tienderen Peter, Schranz M Eric, Bailey-Serres Julia, Voesenek Laurentius A C J, Sasidharan Rashmi
Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (H.v.V., D.V., E.R., S.H., M.K., J.B.-S., L.A.C.J.V., R.S.);Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (H.v.V.);Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands (M.A., P.v.T.);Center for Plant Cell Biology, Botany, and Plant Sciences, University of California, Riverside, California 92521 (T.G., J.B.-S.);Department of Plant Physiology, Bayreuth University, 95447 Bayreuth, Germany (A.M.); andBiosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands (M.E.S.).
Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (H.v.V., D.V., E.R., S.H., M.K., J.B.-S., L.A.C.J.V., R.S.);Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (H.v.V.);Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands (M.A., P.v.T.);Center for Plant Cell Biology, Botany, and Plant Sciences, University of California, Riverside, California 92521 (T.G., J.B.-S.);Department of Plant Physiology, Bayreuth University, 95447 Bayreuth, Germany (A.M.); andBiosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands (M.E.S.)
Plant Physiol. 2016 Oct;172(2):668-689. doi: 10.1104/pp.16.00472. Epub 2016 May 15.
Climate change has increased the frequency and severity of flooding events, with significant negative impact on agricultural productivity. These events often submerge plant aerial organs and roots, limiting growth and survival due to a severe reduction in light reactions and gas exchange necessary for photosynthesis and respiration, respectively. To distinguish molecular responses to the compound stress imposed by submergence, we investigated transcriptomic adjustments to darkness in air and under submerged conditions using eight Arabidopsis (Arabidopsis thaliana) accessions differing significantly in sensitivity to submergence. Evaluation of root and rosette transcriptomes revealed an early transcriptional and posttranscriptional response signature that was conserved primarily across genotypes, although flooding susceptibility-associated and genotype-specific responses also were uncovered. Posttranscriptional regulation encompassed darkness- and submergence-induced alternative splicing of transcripts from pathways involved in the alternative mobilization of energy reserves. The organ-specific transcriptome adjustments reflected the distinct physiological status of roots and shoots. Root-specific transcriptome changes included marked up-regulation of chloroplast-encoded photosynthesis and redox-related genes, whereas those of the rosette were related to the regulation of development and growth processes. We identified a novel set of tolerance genes, recognized mainly by quantitative differences. These included a transcriptome signature of more pronounced gluconeogenesis in tolerant accessions, a response that included stress-induced alternative splicing. This study provides organ-specific molecular resolution of genetic variation in submergence responses involving interactions between darkness and low-oxygen constraints of flooding stress and demonstrates that early transcriptome plasticity, including alternative splicing, is associated with the ability to cope with a compound environmental stress.
气候变化增加了洪水事件的频率和严重程度,对农业生产力产生了重大负面影响。这些事件常常淹没植物的地上器官和根系,分别由于光合作用和呼吸作用所需的光反应和气体交换严重减少,从而限制了植物的生长和存活。为了区分对淹水复合胁迫的分子反应,我们利用八个对淹水敏感性差异显著的拟南芥(Arabidopsis thaliana)生态型,研究了在空气中黑暗条件和淹水条件下的转录组调整。对根和莲座叶转录组的评估揭示了一个早期转录和转录后反应特征,该特征主要在不同基因型间保守,不过也发现了与淹水易感性相关的以及基因型特异性的反应。转录后调控包括黑暗和淹水诱导的参与能量储备替代动员途径的转录本的可变剪接。器官特异性的转录组调整反映了根和地上部分不同的生理状态。根特异性的转录组变化包括叶绿体编码的光合作用和氧化还原相关基因的显著上调,而莲座叶的变化则与发育和生长过程的调控有关。我们鉴定出了一组新的耐受基因,主要通过定量差异来识别。其中包括耐受生态型中更明显的糖异生转录组特征,这种反应包括胁迫诱导的可变剪接。本研究提供了淹水反应中遗传变异的器官特异性分子解析,涉及黑暗和淹水胁迫低氧限制之间的相互作用,并证明早期转录组可塑性,包括可变剪接,与应对复合环境胁迫的能力相关。