Suppr超能文献

人工智能助力的乳腺钼靶检查:探索用于乳腺癌检测的深度学习领域

Artificial Intelligence-Powered Mammography: Navigating the Landscape of Deep Learning for Breast Cancer Detection.

作者信息

Al Muhaisen Sahem, Safi Omar, Ulayan Ahmad, Aljawamis Sara, Fakhoury Maryam, Baydoun Haneen, Abuquteish Dua

机构信息

Medicine, Faculty of Medicine, The Hashemite University, Zarqa, JOR.

Diagnostic Radiology, King Hussein Cancer Center, Amman, JOR.

出版信息

Cureus. 2024 Mar 26;16(3):e56945. doi: 10.7759/cureus.56945. eCollection 2024 Mar.

Abstract

Worldwide, breast cancer (BC) is one of the most commonly diagnosed malignancies in women. Early detection is key to improving survival rates and health outcomes. This literature review focuses on how artificial intelligence (AI), especially deep learning (DL), can enhance the ability of mammography, a key tool in BC detection, to yield more accurate results. Artificial intelligence has shown promise in reducing diagnostic errors and increasing early cancer detection chances. Nevertheless, significant challenges exist, including the requirement for large amounts of high-quality data and concerns over data privacy. Despite these hurdles, AI and DL are advancing the field of radiology, offering better ways to diagnose, detect, and treat diseases. The U.S. Food and Drug Administration (FDA) has approved several AI diagnostic tools. Yet, the full potential of these technologies, especially for more advanced screening methods like digital breast tomosynthesis (DBT), depends on further clinical studies and the development of larger databases. In summary, this review highlights the exciting potential of AI in BC screening. It calls for more research and validation to fully employ the power of AI in clinical practice, ensuring that these technologies can help save lives by improving diagnosis accuracy and efficiency.

摘要

在全球范围内,乳腺癌(BC)是女性中最常被诊断出的恶性肿瘤之一。早期检测是提高生存率和健康结局的关键。这篇文献综述聚焦于人工智能(AI),尤其是深度学习(DL),如何提高乳腺钼靶检查(BC检测中的关键工具)得出更准确结果的能力。人工智能在减少诊断错误和增加早期癌症检测几率方面已显示出前景。然而,仍存在重大挑战,包括需要大量高质量数据以及对数据隐私的担忧。尽管有这些障碍,人工智能和深度学习正在推动放射学领域的发展,提供更好的疾病诊断、检测和治疗方法。美国食品药品监督管理局(FDA)已批准了几种人工智能诊断工具。然而,这些技术的全部潜力,尤其是对于像数字乳腺断层合成(DBT)这样更先进的筛查方法,取决于进一步的临床研究和更大数据库的开发。总之,本综述强调了人工智能在乳腺癌筛查中令人兴奋的潜力。它呼吁进行更多研究和验证,以在临床实践中充分发挥人工智能的力量,确保这些技术能够通过提高诊断准确性和效率来帮助挽救生命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/607d/11044525/76665e0f811c/cureus-0016-00000056945-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验