Molecular Glycobiotechnology Group, Discipline of Biochemistry, National University of Ireland Galway, Galway City, Ireland.
Biotechnology and Microbiology, Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstrasse, 1060 Wien, Austria.
Trends Biochem Sci. 2016 Jul;41(7):633-645. doi: 10.1016/j.tibs.2016.04.006. Epub 2016 May 17.
Lignocellulose, the most abundant renewable carbon source on earth, is the logical candidate to replace fossil carbon as the major biofuel raw material. Nevertheless, the technologies needed to convert lignocellulose into soluble products that can then be utilized by the chemical or fuel industries face several challenges. Enzymatic hydrolysis is of major importance, and we review the progress made in fungal enzyme technology over the past few years with major emphasis on (i) the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products, (ii) the potential uses of lignin degradation products, and (iii) current progress and bottlenecks for the use of the soluble lignocellulose derivatives in emerging biorefineries.
木质纤维素是地球上最丰富的可再生碳源,是替代化石碳作为主要生物燃料原料的理想选择。然而,将木质纤维素转化为可溶产物的技术,这些产物可以被化学或燃料工业利用,面临着许多挑战。酶解是非常重要的,我们回顾了过去几年真菌酶技术的进展,重点是:(i)将多糖(纤维素和半纤维素)转化为可溶产物所需的酶;(ii)木质素降解产物的潜在用途;以及(iii)在新兴的生物精炼厂中使用可溶性木质纤维素衍生物的当前进展和瓶颈。