Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research , Jahnstrasse 29, 69120 Heidelberg, Germany.
EMBL Australia, Monash University , Clayton, Victoria 3800, Australia.
J Am Chem Soc. 2016 Jun 1;138(21):6746-53. doi: 10.1021/jacs.6b00307. Epub 2016 May 23.
Glycopeptide antibiotics (GPAs) are nonribosomal peptides rich in modifications introduced by external enzymes. These enzymes act on the free peptide aglycone or intermediates bound to the nonribosomal peptide synthetase (NRPS) assembly line. In this process the terminal module of the NRPS plays a crucial role as it contains a unique recruitment platform (X-domain) interacting with three to four modifying Cytochrome P450 (P450) enzymes that are responsible for cyclizing bound peptides. However, whether these enzymes share the same binding site on the X-domain and how the order of the cyclization steps is orchestrated has remained elusive. In this study we investigate the first two reactions in teicoplanin aglycone maturation catalyzed by the enzymes OxyBtei and OxyAtei. We demonstrate that both enzymes interact with the X-domain via the identical interaction site with similar affinities, irrespective of the peptide modification stage, while their catalytic activity is restricted to the correctly cross-linked peptide. On the basis of steady state kinetics of the OxyBtei-catalyzed reaction, we propose a model for P450 recruitment and peptide modification that involves continuous association/dissociation of the P450 enzymes with the NRPS, followed by specific recognition of the peptide cyclization state by the P450 (scanning). This leads to an induced conformational change that enhances the affinity of the enzyme/substrate complex and initiates catalysis; product release then occurs, with the product itself becoming the substrate for the second enzyme in the pathway. This model rationalizes our experimental findings for this complex enzyme cascade and provides insights into the orchestration of the sequential peptide tailoring reactions on the terminal NRPS module in GPA biosynthesis.
糖肽类抗生素 (GPAs) 是非核糖体肽,其结构中富含由外部酶引入的修饰。这些酶作用于游离肽糖苷或与非核糖体肽合成酶 (NRPS) 装配线结合的中间产物。在此过程中,NRPS 的末端模块起着至关重要的作用,因为它包含一个独特的招募平台 (X 结构域),与负责环化结合肽的三到四个修饰细胞色素 P450 (P450) 酶相互作用。然而,这些酶是否在 X 结构域上共享相同的结合位点,以及环化步骤的顺序是如何协调的,仍然难以捉摸。在这项研究中,我们研究了泰利霉素糖苷配基成熟过程中由 OxyBtei 和 OxyAtei 酶催化的前两个反应。我们证明,这两种酶都通过相同的相互作用位点与 X 结构域相互作用,亲和力相似,无论肽修饰阶段如何,而它们的催化活性仅限于正确交联的肽。基于 OxyBtei 催化反应的稳态动力学,我们提出了一个 P450 招募和肽修饰的模型,该模型涉及 P450 酶与 NRPS 的连续缔合/解离,随后 P450 对肽环化状态进行特异性识别(扫描)。这导致诱导构象变化,增强酶/底物复合物的亲和力并启动催化;然后发生产物释放,产物本身成为途径中第二酶的底物。该模型合理化了我们对这个复杂酶级联反应的实验发现,并为 GPA 生物合成中末端 NRPS 模块上顺序肽修饰反应的协调提供了见解。