Suppr超能文献

一种使细胞膜包覆纳米颗粒功能化的简便方法。

A Facile Approach to Functionalize Cell Membrane-Coated Nanoparticles.

作者信息

Zhou Hao, Fan Zhiyuan, Lemons Pelin K, Cheng Hao

机构信息

1. Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA;

1. Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA;; 2. School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

出版信息

Theranostics. 2016 Apr 28;6(7):1012-22. doi: 10.7150/thno.15095. eCollection 2016.

Abstract

Convenient strategies to provide cell membrane-coated nanoparticles (CM-NPs) with multi-functionalities beyond the natural function of cell membranes would dramatically expand the application of this emerging class of nanomaterials. We have developed a facile approach to functionalize CM-NPs by chemically modifying live cell membranes prior to CM-NP fabrication using a bifunctional linker, succinimidyl-[(N-maleimidopropionamido)-polyethyleneglycol] ester (NHS-PEG-Maleimide). This method is particularly suitable to conjugate large bioactive molecules such as proteins on cell membranes as it establishes a strong anchorage and enable the control of linker length, a critical parameter for maximizing the function of anchored proteins. As a proof of concept, we show the conjugation of human recombinant hyaluronidase, PH20 (rHuPH20) on red blood cell (RBC) membranes and demonstrate that long linker (MW: 3400) is superior to short linker (MW: 425) for maintaining enzyme activity, while minimizing the changes to cell membranes. When the modified membranes were fabricated into RBC membrane-coated nanoparticles (RBCM-NPs), the conjugated rHuPH20 can assist NP diffusion more efficiently than free rHuPH20 in matrix-mimicking gels and the pericellular hyaluronic acid matrix of PC3 prostate cancer cells. After quenching the unreacted chemical groups with polyethylene glycol, we demonstrated that the rHuPH20 modification does not reduce the ultra-long blood circulation time of RBCM-NPs. Therefore, this surface engineering approach provides a platform to functionlize CM-NPs without sacrificing the natural function of cell membranes.

摘要

提供具有超越细胞膜天然功能的多功能性的细胞膜包覆纳米颗粒(CM-NPs)的便捷策略将极大地扩展这类新兴纳米材料的应用。我们已经开发出一种简便的方法,通过在使用双功能连接剂琥珀酰亚胺基-[(N-马来酰亚胺丙酰胺基)-聚乙二醇]酯(NHS-PEG-马来酰亚胺)制备CM-NPs之前对活细胞膜进行化学修饰,来使CM-NPs功能化。这种方法特别适合于在细胞膜上共轭诸如蛋白质等大的生物活性分子,因为它能建立牢固的锚定并能控制连接子长度,这是使锚定蛋白质功能最大化的关键参数。作为概念验证,我们展示了人重组透明质酸酶PH20(rHuPH20)在红细胞(RBC)膜上的共轭,并证明长连接子(分子量:3400)在维持酶活性方面优于短连接子(分子量:425),同时能将对细胞膜的改变降至最低。当将修饰后的膜制备成红细胞膜包覆纳米颗粒(RBCM-NPs)时,共轭的rHuPH20在模拟基质的凝胶和PC3前列腺癌细胞的细胞周围透明质酸基质中比游离的rHuPH20能更有效地协助纳米颗粒扩散。在用聚乙二醇淬灭未反应的化学基团后,我们证明rHuPH20修饰不会降低RBCM-NPs的超长血液循环时间。因此,这种表面工程方法提供了一个在不牺牲细胞膜天然功能的情况下使CM-NPs功能化的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/132c/4876625/fe18676d658d/thnov06p1012g001.jpg

相似文献

1
A Facile Approach to Functionalize Cell Membrane-Coated Nanoparticles.
Theranostics. 2016 Apr 28;6(7):1012-22. doi: 10.7150/thno.15095. eCollection 2016.
2
Hyaluronidase Embedded in Nanocarrier PEG Shell for Enhanced Tumor Penetration and Highly Efficient Antitumor Efficacy.
Nano Lett. 2016 May 11;16(5):3268-77. doi: 10.1021/acs.nanolett.6b00820. Epub 2016 Apr 8.
3
Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application.
Acta Pharm Sin B. 2019 Jul;9(4):675-689. doi: 10.1016/j.apsb.2019.01.011. Epub 2019 Jan 24.
5
Preparation and evaluation of tumour microenvironment response multistage nanoparticles for epirubicin delivery and deep tumour penetration.
Artif Cells Nanomed Biotechnol. 2018;46(sup2):860-873. doi: 10.1080/21691401.2018.1470528. Epub 2018 May 17.
7
Constitutive expression of recombinant human hyaluronidase PH20 by Pichia pastoris.
J Biosci Bioeng. 2016 Dec;122(6):673-678. doi: 10.1016/j.jbiosc.2016.06.007. Epub 2016 Jun 28.
8
Microfluidic Sonication To Assemble Exosome Membrane-Coated Nanoparticles for Immune Evasion-Mediated Targeting.
Nano Lett. 2019 Nov 13;19(11):7836-7844. doi: 10.1021/acs.nanolett.9b02841. Epub 2019 Oct 11.
10
Erythrocyte Membrane-Wrapped pH Sensitive Polymeric Nanoparticles for Non-Small Cell Lung Cancer Therapy.
Bioconjug Chem. 2017 Oct 18;28(10):2591-2598. doi: 10.1021/acs.bioconjchem.7b00428. Epub 2017 Sep 14.

引用本文的文献

1
Biomimetic nanocarriers for the therapy and management of intestinal inflammations.
Int J Pharm X. 2025 Aug 21;10:100377. doi: 10.1016/j.ijpx.2025.100377. eCollection 2025 Dec.
2
Application of Biomimetic Cell Membrane-Coated Nanocarriers in Cardiovascular Diseases.
Int J Nanomedicine. 2025 Jun 26;20:8249-8289. doi: 10.2147/IJN.S531558. eCollection 2025.
3
Cell membrane-derived nanovesicles as extracellular vesicle-mimetics in wound healing.
Mater Today Bio. 2025 Feb 18;31:101595. doi: 10.1016/j.mtbio.2025.101595. eCollection 2025 Apr.
4
Biomimetic Nanoparticles for Basic Drug Delivery.
Pharmaceutics. 2024 Oct 7;16(10):1306. doi: 10.3390/pharmaceutics16101306.
7
Antibody-Loading of Biological Nanocarrier Vesicles Derived from Red-Blood-Cell Membranes.
ACS Omega. 2024 May 14;9(21):22711-22718. doi: 10.1021/acsomega.4c00650. eCollection 2024 May 28.
8
Erythrocytes Nanoparticle Delivery: A Boon for Targeting Tumor.
Adv Pharm Bull. 2024 Mar;14(1):132-146. doi: 10.34172/apb.2023.080. Epub 2023 Apr 29.
10
Multifunctional cell membranes-based nano-carriers for targeted therapies: a review of recent trends and future perspective.
Drug Deliv. 2023 Dec;30(1):2288797. doi: 10.1080/10717544.2023.2288797. Epub 2023 Dec 9.

本文引用的文献

1
Structural elucidation of cell membrane-derived nanoparticles using molecular probes.
J Mater Chem B. 2014 Dec 14;2(46):8231-8238. doi: 10.1039/c4tb00980k. Epub 2014 Sep 26.
3
Anticancer Platelet-Mimicking Nanovehicles.
Adv Mater. 2015 Nov 25;27(44):7043-50. doi: 10.1002/adma.201503323. Epub 2015 Sep 29.
4
Nanoparticle biointerfacing by platelet membrane cloaking.
Nature. 2015 Oct 1;526(7571):118-21. doi: 10.1038/nature15373. Epub 2015 Sep 16.
5
Erythrocyte Membrane-Enveloped Polymeric Nanoparticles as Nanovaccine for Induction of Antitumor Immunity against Melanoma.
ACS Nano. 2015 Jul 28;9(7):6918-33. doi: 10.1021/acsnano.5b01042. Epub 2015 Jul 14.
6
Cell or cell membrane-based drug delivery systems.
Theranostics. 2015 Apr 27;5(8):863-81. doi: 10.7150/thno.11852. eCollection 2015.
7
Modulating antibacterial immunity via bacterial membrane-coated nanoparticles.
Nano Lett. 2015 Feb 11;15(2):1403-9. doi: 10.1021/nl504798g. Epub 2015 Jan 26.
8
Non-genetic engineering of cells for drug delivery and cell-based therapy.
Adv Drug Deliv Rev. 2015 Aug 30;91:125-40. doi: 10.1016/j.addr.2014.12.003. Epub 2014 Dec 24.
9
Tumor-associated hyaluronan limits efficacy of monoclonal antibody therapy.
Mol Cancer Ther. 2015 Feb;14(2):523-32. doi: 10.1158/1535-7163.MCT-14-0580. Epub 2014 Dec 15.
10
Core-shell supramolecular gelatin nanoparticles for adaptive and "on-demand" antibiotic delivery.
ACS Nano. 2014 May 27;8(5):4975-83. doi: 10.1021/nn501040h. Epub 2014 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验