Zhou Hao, Fan Zhiyuan, Lemons Pelin K, Cheng Hao
1. Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA;
1. Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA;; 2. School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.
Theranostics. 2016 Apr 28;6(7):1012-22. doi: 10.7150/thno.15095. eCollection 2016.
Convenient strategies to provide cell membrane-coated nanoparticles (CM-NPs) with multi-functionalities beyond the natural function of cell membranes would dramatically expand the application of this emerging class of nanomaterials. We have developed a facile approach to functionalize CM-NPs by chemically modifying live cell membranes prior to CM-NP fabrication using a bifunctional linker, succinimidyl-[(N-maleimidopropionamido)-polyethyleneglycol] ester (NHS-PEG-Maleimide). This method is particularly suitable to conjugate large bioactive molecules such as proteins on cell membranes as it establishes a strong anchorage and enable the control of linker length, a critical parameter for maximizing the function of anchored proteins. As a proof of concept, we show the conjugation of human recombinant hyaluronidase, PH20 (rHuPH20) on red blood cell (RBC) membranes and demonstrate that long linker (MW: 3400) is superior to short linker (MW: 425) for maintaining enzyme activity, while minimizing the changes to cell membranes. When the modified membranes were fabricated into RBC membrane-coated nanoparticles (RBCM-NPs), the conjugated rHuPH20 can assist NP diffusion more efficiently than free rHuPH20 in matrix-mimicking gels and the pericellular hyaluronic acid matrix of PC3 prostate cancer cells. After quenching the unreacted chemical groups with polyethylene glycol, we demonstrated that the rHuPH20 modification does not reduce the ultra-long blood circulation time of RBCM-NPs. Therefore, this surface engineering approach provides a platform to functionlize CM-NPs without sacrificing the natural function of cell membranes.
提供具有超越细胞膜天然功能的多功能性的细胞膜包覆纳米颗粒(CM-NPs)的便捷策略将极大地扩展这类新兴纳米材料的应用。我们已经开发出一种简便的方法,通过在使用双功能连接剂琥珀酰亚胺基-[(N-马来酰亚胺丙酰胺基)-聚乙二醇]酯(NHS-PEG-马来酰亚胺)制备CM-NPs之前对活细胞膜进行化学修饰,来使CM-NPs功能化。这种方法特别适合于在细胞膜上共轭诸如蛋白质等大的生物活性分子,因为它能建立牢固的锚定并能控制连接子长度,这是使锚定蛋白质功能最大化的关键参数。作为概念验证,我们展示了人重组透明质酸酶PH20(rHuPH20)在红细胞(RBC)膜上的共轭,并证明长连接子(分子量:3400)在维持酶活性方面优于短连接子(分子量:425),同时能将对细胞膜的改变降至最低。当将修饰后的膜制备成红细胞膜包覆纳米颗粒(RBCM-NPs)时,共轭的rHuPH20在模拟基质的凝胶和PC3前列腺癌细胞的细胞周围透明质酸基质中比游离的rHuPH20能更有效地协助纳米颗粒扩散。在用聚乙二醇淬灭未反应的化学基团后,我们证明rHuPH20修饰不会降低RBCM-NPs的超长血液循环时间。因此,这种表面工程方法提供了一个在不牺牲细胞膜天然功能的情况下使CM-NPs功能化的平台。