Suppr超能文献

通过离体高光谱自发荧光成像对人视网膜色素上皮荧光团家族进行空间和光谱表征。

Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging.

作者信息

Ben Ami Tal, Tong Yuehong, Bhuiyan Alauddin, Huisingh Carrie, Ablonczy Zsolt, Ach Thomas, Curcio Christine A, Smith R Theodore

机构信息

Department of Ophthalmology, New York University School of Medicine, New York, New York, USA.

Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, USA.

出版信息

Transl Vis Sci Technol. 2016 May 17;5(3):5. doi: 10.1167/tvst.5.3.5. eCollection 2016 May.

Abstract

PURPOSE

Discovery of candidate spectra for abundant fluorophore families in human retinal pigment epithelium (RPE) by ex vivo hyperspectral imaging.

METHODS

Hyperspectral autofluorescence emission images were captured between 420 and 720 nm (10-nm intervals), at two excitation bands (436-460, 480-510 nm), from three locations (fovea, perifovea, near-periphery) in 20 normal RPE/Bruch's membrane (BrM) flatmounts. Mathematical factorization extracted a BrM spectrum (S0) and abundant lipofuscin/melanolipofuscin (LF/ML) spectra of RPE origin (S1, S2, S3) from each tissue.

RESULTS

Smooth spectra S1 to S3, with perinuclear localization consistent with LF/ML at all three retinal locations and both excitations in 14 eyes (84 datasets), were included in the analysis. The mean peak emissions of S0, S1, and S2 at 436 nm were, respectively, 495 ± 14, 535 ± 17, and 576 ± 20 nm. S3 was generally trimodal, with peaks at either 580, 620, or 650 nm (peak mode, 650 nm). At 480 nm, S0, S1, and S2 were red-shifted to 526 ± 9, 553 ± 10, and 588 ± 23 nm, and S3 was again trimodal (peak mode, 620 nm). S1 often split into two spectra, S1A and S1B. S3 strongly colocalized with melanin. There were no significant differences across age, sex, or retinal location.

CONCLUSIONS

There appear to be at least three families of abundant RPE fluorophores that are ubiquitous across age, retinal location, and sex in this sample of healthy eyes. Further molecular characterization by imaging mass spectrometry and localization via super-resolution microscopy should elucidate normal and abnormal RPE physiology involving fluorophores.

TRANSLATIONAL RELEVANCE

Our results help establish hyperspectral autofluorescence imaging of the human retinal pigment epithelium as a useful tool for investigating retinal health and disease.

摘要

目的

通过离体高光谱成像发现人视网膜色素上皮(RPE)中丰富荧光团家族的候选光谱。

方法

在20个正常RPE/布鲁赫膜(BrM)平铺标本的三个位置(中央凹、中央凹周围、近周边),于两个激发波段(436 - 460、480 - 510 nm)下,采集420至720 nm(间隔10 nm)的高光谱自发荧光发射图像。数学分解从每个组织中提取出一个BrM光谱(S0)和源自RPE的丰富脂褐素/黑素脂褐素(LF/ML)光谱(S1、S2、S3)。

结果

分析纳入了在所有三个视网膜位置以及14只眼(84个数据集)的两种激发情况下,具有与LF/ML一致的核周定位的平滑光谱S1至S3。在436 nm处,S0、S1和S2的平均峰值发射分别为495±14、535±17和576±20 nm。S3通常为三峰,峰值位于580、620或650 nm(峰值模式为650 nm)。在480 nm处,S0、S1和S2红移至526±9、553±10和588±23 nm,且S3再次为三峰(峰值模式为620 nm)。S1常分裂为两个光谱,即S1A和S1B。S3与黑色素强烈共定位。年龄、性别或视网膜位置之间无显著差异。

结论

在该健康眼样本中,似乎至少存在三个丰富的RPE荧光团家族,它们在年龄、视网膜位置和性别上普遍存在。通过成像质谱进行进一步的分子表征以及通过超分辨率显微镜进行定位,应能阐明涉及荧光团的正常和异常RPE生理学。

转化相关性

我们的结果有助于将人视网膜色素上皮的高光谱自发荧光成像确立为研究视网膜健康和疾病的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dda/4874453/7b86049673a3/i2164-2591-5-3-5-f01.jpg

相似文献

7
Spectral Analysis of Human Retinal Pigment Epithelium Cells in Healthy and AMD Eyes.
Invest Ophthalmol Vis Sci. 2024 Jan 2;65(1):10. doi: 10.1167/iovs.65.1.10.
8
Quantitative autofluorescence and cell density maps of the human retinal pigment epithelium.
Invest Ophthalmol Vis Sci. 2014 Jul 17;55(8):4832-41. doi: 10.1167/iovs.14-14802.

引用本文的文献

1
Separating Surface Reflectance from Volume Reflectance in Medical Hyperspectral Imaging.
Diagnostics (Basel). 2024 Aug 20;14(16):1812. doi: 10.3390/diagnostics14161812.
2
Hyperspectral retinal imaging biomarkers of ocular and systemic diseases.
Eye (Lond). 2025 Mar;39(4):667-672. doi: 10.1038/s41433-024-03135-9. Epub 2024 May 22.
6
Label-free hyperspectral imaging and deep-learning prediction of retinal amyloid β-protein and phosphorylated tau.
PNAS Nexus. 2022 Aug 19;1(4):pgac164. doi: 10.1093/pnasnexus/pgac164. eCollection 2022 Sep.
7
Fundus Autofluorescence Imaging in Patients with Choroidal Melanoma.
Cancers (Basel). 2022 Apr 2;14(7):1809. doi: 10.3390/cancers14071809.
8
Retinal Organoids Long-Term Functional Characterization Using Two-Photon Fluorescence Lifetime and Hyperspectral Microscopy.
Front Cell Neurosci. 2021 Dec 10;15:796903. doi: 10.3389/fncel.2021.796903. eCollection 2021.

本文引用的文献

2
Simultaneous decomposition of multiple hyperspectral data sets: signal recovery of unknown fluorophores in the retinal pigment epithelium.
Biomed Opt Express. 2014 Nov 6;5(12):4171-85. doi: 10.1364/BOE.5.004171. eCollection 2014 Dec 1.
3
Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition.
J Biophotonics. 2015 Jun;8(6):441-56. doi: 10.1002/jbio.201400051. Epub 2014 Sep 3.
4
Quantitative autofluorescence and cell density maps of the human retinal pigment epithelium.
Invest Ophthalmol Vis Sci. 2014 Jul 17;55(8):4832-41. doi: 10.1167/iovs.14-14802.
6
The utilization of fluorescence to identify the components of lipofuscin by imaging mass spectrometry.
Proteomics. 2014 Apr;14(7-8):936-44. doi: 10.1002/pmic.201300406. Epub 2014 Mar 5.
7
Medical hyperspectral imaging: a review.
J Biomed Opt. 2014 Jan;19(1):10901. doi: 10.1117/1.JBO.19.1.010901.
8
Progress on retinal image analysis for age related macular degeneration.
Prog Retin Eye Res. 2014 Jan;38:20-42. doi: 10.1016/j.preteyeres.2013.10.002. Epub 2013 Nov 7.
9
Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy.
Ophthalmology. 2013 Apr;120(4):821-8. doi: 10.1016/j.ophtha.2012.10.007. Epub 2013 Jan 26.
10
New insights into retinoid metabolism and cycling within the retina.
Prog Retin Eye Res. 2013 Jan;32:48-63. doi: 10.1016/j.preteyeres.2012.09.002. Epub 2012 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验