Suppr超能文献

新生儿黄疸检测系统

Neonatal Jaundice Detection System.

作者信息

Aydın Mustafa, Hardalaç Fırat, Ural Berkan, Karap Serhat

机构信息

Pediatrics-Neonatology, Fırat University, Elazig, Turkey.

Electrical Electronics Engineering, Gazi University, Ankara, Turkey.

出版信息

J Med Syst. 2016 Jul;40(7):166. doi: 10.1007/s10916-016-0523-4. Epub 2016 May 26.

Abstract

Neonatal jaundice is a common condition that occurs in newborn infants in the first week of life. Today, techniques used for detection are required blood samples and other clinical testing with special equipment. The aim of this study is creating a non-invasive system to control and to detect the jaundice periodically and helping doctors for early diagnosis. In this work, first, a patient group which is consisted from jaundiced babies and a control group which is consisted from healthy babies are prepared, then between 24 and 48 h after birth, 40 jaundiced and 40 healthy newborns are chosen. Second, advanced image processing techniques are used on the images which are taken with a standard smartphone and the color calibration card. Segmentation, pixel similarity and white balancing methods are used as image processing techniques and RGB values and pixels' important information are obtained exactly. Third, during feature extraction stage, with using colormap transformations and feature calculation, comparisons are done in RGB plane between color change values and the 8-color calibration card which is specially designed. Finally, in the bilirubin level estimation stage, kNN and SVR machine learning regressions are used on the dataset which are obtained from feature extraction. At the end of the process, when the control group is based on for comparisons, jaundice is succesfully detected for 40 jaundiced infants and the success rate is 85 %. Obtained bilirubin estimation results are consisted with bilirubin results which are obtained from the standard blood test and the compliance rate is 85 %.

摘要

新生儿黄疸是一种常见病症,发生于出生后第一周的新生儿中。如今,用于检测的技术需要采集血样并使用特殊设备进行其他临床检测。本研究的目的是创建一个非侵入性系统,用于定期监测和检测黄疸,并帮助医生进行早期诊断。在这项工作中,首先,准备了一个由黄疸婴儿组成的患者组和一个由健康婴儿组成的对照组,然后在出生后24至48小时之间,挑选了40名黄疸新生儿和40名健康新生儿。其次,对用标准智能手机和颜色校准卡拍摄的图像使用先进的图像处理技术。分割、像素相似度和白平衡方法被用作图像处理技术,准确获取RGB值和像素的重要信息。第三,在特征提取阶段,通过使用颜色映射变换和特征计算,在RGB平面上对颜色变化值与专门设计的8色校准卡进行比较。最后,在胆红素水平估计阶段,对从特征提取中获得的数据集使用kNN和SVR机器学习回归。在该过程结束时,以对照组为比较基础,成功检测出40名黄疸婴儿的黄疸情况,成功率为85%。获得的胆红素估计结果与从标准血液检测中获得的胆红素结果一致,符合率为85%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验