Suppr超能文献

基于眼、皮肤和融合特征的智能手机相机在新生儿黄疸诊断中的应用研究。

Neonatal Jaundice Diagnosis Using a Smartphone Camera Based on Eye, Skin, and Fused Features with Transfer Learning.

机构信息

Information Technology Department, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia.

Decision Support Center, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia.

出版信息

Sensors (Basel). 2021 Oct 23;21(21):7038. doi: 10.3390/s21217038.

Abstract

Neonatal jaundice is a common condition worldwide. Failure of timely diagnosis and treatment can lead to death or brain injury. Current diagnostic approaches include a painful and time-consuming invasive blood test and non-invasive tests using costly transcutaneous bilirubinometers. Since periodic monitoring is crucial, multiple efforts have been made to develop non-invasive diagnostic tools using a smartphone camera. However, existing works rely either on skin or eye images using statistical or traditional machine learning methods. In this paper, we adopt a deep transfer learning approach based on eye, skin, and fused images. We also trained well-known traditional machine learning models, including multi-layer perceptron (MLP), support vector machine (SVM), decision tree (DT), and random forest (RF), and compared their performance with that of the transfer learning model. We collected our dataset using a smartphone camera. Moreover, unlike most of the existing contributions, we report accuracy, precision, recall, f-score, and area under the curve (AUC) for all the experiments and analyzed their significance statistically. Our results indicate that the transfer learning model performed the best with skin images, while traditional models achieved the best performance with eyes and fused features. Further, we found that the transfer learning model with skin features performed comparably to the MLP model with eye features.

摘要

新生儿黄疸是一种全球范围内常见的病症。如果不能及时诊断和治疗,可能会导致死亡或脑损伤。目前的诊断方法包括痛苦且耗时的有创血液检测,以及使用昂贵的经皮胆红素计进行的非侵入性检测。由于定期监测至关重要,因此已经做出了多项努力来开发使用智能手机摄像头的非侵入性诊断工具。然而,现有的工作要么依赖于使用统计或传统机器学习方法的皮肤或眼睛图像。在本文中,我们采用了基于眼睛、皮肤和融合图像的深度迁移学习方法。我们还训练了著名的传统机器学习模型,包括多层感知机 (MLP)、支持向量机 (SVM)、决策树 (DT) 和随机森林 (RF),并比较了它们与迁移学习模型的性能。我们使用智能手机摄像头收集了我们的数据集。此外,与大多数现有贡献不同,我们报告了所有实验的准确性、精度、召回率、f 值和曲线下面积 (AUC),并从统计学上分析了它们的显著性。我们的结果表明,迁移学习模型在皮肤图像上表现最佳,而传统模型在眼睛和融合特征上表现最佳。此外,我们发现,具有皮肤特征的迁移学习模型与具有眼睛特征的 MLP 模型性能相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e10/8588081/265dd3fef69c/sensors-21-07038-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验