Suppr超能文献

使用自适应分数阶正则化的统计迭代重建

Statistical iterative reconstruction using adaptive fractional order regularization.

作者信息

Zhang Yi, Wang Yan, Zhang Weihua, Lin Feng, Pu Yifei, Zhou Jiliu

机构信息

College of Computer Science, Sichuan University, Chengdu 610065, China.

出版信息

Biomed Opt Express. 2016 Feb 24;7(3):1015-29. doi: 10.1364/BOE.7.001015. eCollection 2016 Mar 1.

Abstract

In order to reduce the radiation dose of the X-ray computed tomography (CT), low-dose CT has drawn much attention in both clinical and industrial fields. A fractional order model based on statistical iterative reconstruction framework was proposed in this study. To further enhance the performance of the proposed model, an adaptive order selection strategy, determining the fractional order pixel-by-pixel, was given. Experiments, including numerical and clinical cases, illustrated better results than several existing methods, especially, in structure and texture preservation.

摘要

为了降低X射线计算机断层扫描(CT)的辐射剂量,低剂量CT在临床和工业领域都备受关注。本研究提出了一种基于统计迭代重建框架的分数阶模型。为了进一步提高所提模型的性能,给出了一种逐像素确定分数阶的自适应阶数选择策略。包括数值和临床病例在内的实验表明,该方法比几种现有方法具有更好的效果,尤其是在结构和纹理保留方面。

相似文献

1
Statistical iterative reconstruction using adaptive fractional order regularization.
Biomed Opt Express. 2016 Feb 24;7(3):1015-29. doi: 10.1364/BOE.7.001015. eCollection 2016 Mar 1.
4
Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study.
AJR Am J Roentgenol. 2009 Sep;193(3):764-71. doi: 10.2214/AJR.09.2397.
5
CT Image Reconstruction from Sparse Projections Using Adaptive TpV Regularization.
Comput Math Methods Med. 2015;2015:354869. doi: 10.1155/2015/354869. Epub 2015 May 18.
6
Full Dose-Reduction Potential of Statistical Iterative Reconstruction for Head CT Protocols in a Predominantly Pediatric Population.
AJNR Am J Neuroradiol. 2016 Jul;37(7):1199-205. doi: 10.3174/ajnr.A4754. Epub 2016 Apr 7.
10
Block-matching sparsity regularization-based image reconstruction for low-dose computed tomography.
Med Phys. 2018 Jun;45(6):2439-2452. doi: 10.1002/mp.12911. Epub 2018 Apr 29.

引用本文的文献

1
Multi-scale perceptual modulation network for low-dose computed tomography denoising.
Quant Imaging Med Surg. 2024 Dec 5;14(12):9290-9305. doi: 10.21037/qims-24-1145. Epub 2024 Nov 29.
3
Self-adaption and texture generation: A hybrid loss function for low-dose CT denoising.
J Appl Clin Med Phys. 2023 Sep;24(9):e14113. doi: 10.1002/acm2.14113. Epub 2023 Aug 11.
4
Multislice input for 2D and 3D residual convolutional neural network noise reduction in CT.
J Med Imaging (Bellingham). 2023 Jan;10(1):014003. doi: 10.1117/1.JMI.10.1.014003. Epub 2023 Jan 31.
5
ERA-WGAT: Edge-enhanced residual autoencoder with a window-based graph attention convolutional network for low-dose CT denoising.
Biomed Opt Express. 2022 Oct 13;13(11):5775-5793. doi: 10.1364/BOE.471340. eCollection 2022 Nov 1.
7
A review on Deep Learning approaches for low-dose Computed Tomography restoration.
Complex Intell Systems. 2023;9(3):2713-2745. doi: 10.1007/s40747-021-00405-x. Epub 2021 May 30.
8
InNetGAN: Inception Network-Based Generative Adversarial Network for Denoising Low-Dose Computed Tomography.
J Healthc Eng. 2021 Sep 10;2021:9975762. doi: 10.1155/2021/9975762. eCollection 2021.
9
Investigation of Low-Dose CT Image Denoising Using Unpaired Deep Learning Methods.
IEEE Trans Radiat Plasma Med Sci. 2021 Mar;5(2):224-234. doi: 10.1109/trpms.2020.3007583. Epub 2020 Jul 7.

本文引用的文献

1
Few-view image reconstruction with fractional-order total variation.
J Opt Soc Am A Opt Image Sci Vis. 2014 May 1;31(5):981-95. doi: 10.1364/JOSAA.31.000981.
2
Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction.
Phys Med Biol. 2012 Dec 7;57(23):7923-56. doi: 10.1088/0031-9155/57/23/7923. Epub 2012 Nov 15.
5
Image reconstruction for hybrid true-color micro-CT.
IEEE Trans Biomed Eng. 2012 Jun;59(6):1711-9. doi: 10.1109/TBME.2012.2192119. Epub 2012 Apr 3.
6
Statistical image reconstruction from limited projection data with intensity priors.
Phys Med Biol. 2012 Apr 7;57(7):2039-61. doi: 10.1088/0031-9155/57/7/2039. Epub 2012 Mar 20.
7
Efficient CT metal artifact reduction based on fractional-order curvature diffusion.
Comput Math Methods Med. 2011;2011:173748. doi: 10.1155/2011/173748. Epub 2011 Jul 24.
8
A new CT metal artifacts reduction algorithm based on fractional-order sinogram inpainting.
J Xray Sci Technol. 2011;19(3):373-84. doi: 10.3233/XST-2011-0300.
9
Low-dose CT reconstruction via edge-preserving total variation regularization.
Phys Med Biol. 2011 Sep 21;56(18):5949-67. doi: 10.1088/0031-9155/56/18/011. Epub 2011 Aug 22.
10
Low-dose 4DCT reconstruction via temporal nonlocal means.
Med Phys. 2011 Mar;38(3):1359-65. doi: 10.1118/1.3547724.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验