National Digital Switching System Engineering & Technological Research Centre, Zhengzhou, Henan, 450002, China.
Med Phys. 2018 Jun;45(6):2439-2452. doi: 10.1002/mp.12911. Epub 2018 Apr 29.
Low-dose computed tomography (CT) imaging has been widely explored because it can reduce the radiation risk to human bodies. This presents challenges in improving the image quality because low radiation dose with reduced tube current and pulse duration introduces severe noise. In this study, we investigate block-matching sparsity regularization (BMSR) and devise an optimization problem for low-dose image reconstruction.
The objective function of the program is built by combining the sparse coding of BMSR and analysis error, which is subject to physical data measurement. A practical reconstruction algorithm using hard thresholding and projection-onto-convex-set for fast and stable performance is developed. An efficient scheme for the choices of regularization parameters is analyzed and designed.
In the experiments, the proposed method is compared with a conventional edge preservation method and adaptive dictionary-based iterative reconstruction. Experiments with clinical images and real CT data indicate that the obtained results show promising capabilities in noise suppression and edge preservation compared with the competing methods.
A block-matching-based reconstruction method for low-dose CT is proposed. Improvements in image quality are verified by quantitative metrics and visual comparisons, thereby indicating the potential of the proposed method for real-life applications.
低剂量计算机断层扫描(CT)成像已被广泛探索,因为它可以降低对人体的辐射风险。这给提高图像质量带来了挑战,因为低辐射剂量会降低管电流和脉冲持续时间,从而引入严重的噪声。在这项研究中,我们研究了块匹配稀疏正则化(BMSR),并设计了一个用于低剂量图像重建的优化问题。
程序的目标函数通过将 BMSR 的稀疏编码和分析误差相结合来构建,这受物理数据测量的限制。开发了一种实用的重建算法,该算法使用硬阈值和凸集投影,具有快速和稳定的性能。分析并设计了一种有效的正则化参数选择方案。
在实验中,将所提出的方法与传统的边缘保持方法和基于自适应字典的迭代重建方法进行了比较。使用临床图像和真实 CT 数据进行的实验表明,与竞争方法相比,所获得的结果在噪声抑制和边缘保持方面具有令人鼓舞的能力。
提出了一种基于块匹配的低剂量 CT 重建方法。通过定量指标和视觉比较验证了图像质量的提高,从而表明了所提出方法在实际应用中的潜力。