Suppr超能文献

ERA-WGAT:用于低剂量CT去噪的基于窗口的图注意力卷积网络的边缘增强残差自动编码器

ERA-WGAT: Edge-enhanced residual autoencoder with a window-based graph attention convolutional network for low-dose CT denoising.

作者信息

Liu Han, Liao Peixi, Chen Hu, Zhang Yi

机构信息

College of Computer Science, Sichuan University, Chengdu 610065, China.

Department of Scientific Research and Education, The Sixth People's Hospital of Chengdu, Chengdu 610051, China.

出版信息

Biomed Opt Express. 2022 Oct 13;13(11):5775-5793. doi: 10.1364/BOE.471340. eCollection 2022 Nov 1.

Abstract

Computed tomography (CT) has become a powerful tool for medical diagnosis. However, minimizing X-ray radiation risk for the patient poses significant challenges to obtain suitable low dose CT images. Although various low-dose CT methods using deep learning techniques have produced impressive results, convolutional neural network based methods focus more on local information and hence are very limited for non-local information extraction. This paper proposes ERA-WGAT, a residual autoencoder incorporating an edge enhancement module that performs convolution with eight types of learnable operators providing rich edge information and a window-based graph attention convolutional network that combines static and dynamic attention modules to explore non-local self-similarity. We use the compound loss function that combines MSE loss and multi-scale perceptual loss to mitigate the over-smoothing problem. Compared with current low-dose CT denoising methods, ERA-WGAT confirmed superior noise suppression and perceived image quality.

摘要

计算机断层扫描(CT)已成为医学诊断的强大工具。然而,将患者的X射线辐射风险降至最低对获取合适的低剂量CT图像构成了重大挑战。尽管使用深度学习技术的各种低剂量CT方法已经取得了令人瞩目的成果,但基于卷积神经网络的方法更多地关注局部信息,因此在非局部信息提取方面非常有限。本文提出了ERA-WGAT,一种残差自动编码器,它结合了一个边缘增强模块,该模块与八种可学习算子进行卷积以提供丰富的边缘信息,以及一个基于窗口的图注意力卷积网络,该网络结合了静态和动态注意力模块来探索非局部自相似性。我们使用结合了均方误差损失和多尺度感知损失的复合损失函数来减轻过平滑问题。与当前的低剂量CT去噪方法相比,ERA-WGAT在噪声抑制和感知图像质量方面表现出色。

相似文献

本文引用的文献

1
Deep Graph-Convolutional Image Denoising.深度图卷积图像去噪
IEEE Trans Image Process. 2020 Aug 5;PP. doi: 10.1109/TIP.2020.3013166.
3
Quadratic Autoencoder (Q-AE) for Low-Dose CT Denoising.用于低剂量 CT 去噪的二次自动编码器(Q-AE)
IEEE Trans Med Imaging. 2020 Jun;39(6):2035-2050. doi: 10.1109/TMI.2019.2963248. Epub 2019 Dec 31.
6
Learned Primal-Dual Reconstruction.学习原对偶重建。
IEEE Trans Med Imaging. 2018 Jun;37(6):1322-1332. doi: 10.1109/TMI.2018.2799231.
7
Spectral CT Reconstruction with Image Sparsity and Spectral Mean.基于图像稀疏性和光谱均值的光谱CT重建
IEEE Trans Comput Imaging. 2016 Dec;2(4):510-523. doi: 10.1109/TCI.2016.2609414. Epub 2016 Sep 14.
9
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.采用残差编解码器卷积神经网络的低剂量CT
IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.
10
Generative Adversarial Networks for Noise Reduction in Low-Dose CT.生成对抗网络在低剂量 CT 中的噪声降低。
IEEE Trans Med Imaging. 2017 Dec;36(12):2536-2545. doi: 10.1109/TMI.2017.2708987. Epub 2017 May 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验