Liu Han, Liao Peixi, Chen Hu, Zhang Yi
College of Computer Science, Sichuan University, Chengdu 610065, China.
Department of Scientific Research and Education, The Sixth People's Hospital of Chengdu, Chengdu 610051, China.
Biomed Opt Express. 2022 Oct 13;13(11):5775-5793. doi: 10.1364/BOE.471340. eCollection 2022 Nov 1.
Computed tomography (CT) has become a powerful tool for medical diagnosis. However, minimizing X-ray radiation risk for the patient poses significant challenges to obtain suitable low dose CT images. Although various low-dose CT methods using deep learning techniques have produced impressive results, convolutional neural network based methods focus more on local information and hence are very limited for non-local information extraction. This paper proposes ERA-WGAT, a residual autoencoder incorporating an edge enhancement module that performs convolution with eight types of learnable operators providing rich edge information and a window-based graph attention convolutional network that combines static and dynamic attention modules to explore non-local self-similarity. We use the compound loss function that combines MSE loss and multi-scale perceptual loss to mitigate the over-smoothing problem. Compared with current low-dose CT denoising methods, ERA-WGAT confirmed superior noise suppression and perceived image quality.
计算机断层扫描(CT)已成为医学诊断的强大工具。然而,将患者的X射线辐射风险降至最低对获取合适的低剂量CT图像构成了重大挑战。尽管使用深度学习技术的各种低剂量CT方法已经取得了令人瞩目的成果,但基于卷积神经网络的方法更多地关注局部信息,因此在非局部信息提取方面非常有限。本文提出了ERA-WGAT,一种残差自动编码器,它结合了一个边缘增强模块,该模块与八种可学习算子进行卷积以提供丰富的边缘信息,以及一个基于窗口的图注意力卷积网络,该网络结合了静态和动态注意力模块来探索非局部自相似性。我们使用结合了均方误差损失和多尺度感知损失的复合损失函数来减轻过平滑问题。与当前的低剂量CT去噪方法相比,ERA-WGAT在噪声抑制和感知图像质量方面表现出色。