Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada.
Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Cell Stem Cell. 2016 Aug 4;19(2):232-247. doi: 10.1016/j.stem.2016.04.015. Epub 2016 May 26.
Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming.
调控干细胞维持的机制是防止干细胞耗竭和衰老的关键。虽然线粒体形态在组织发育和内稳态中起着基本作用,但它在干细胞中的作用尚不清楚。在这里,我们揭示了线粒体动力学通过协调转录程序来调节干细胞的特性、自我更新和命运决定。通过 OPA1 或 MFN1/2 缺失来操纵线粒体结构,会损害神经干细胞(NSC)的自我更新,导致与年龄相关的耗竭、神经发生缺陷和认知障碍。基因表达谱分析显示 Notch 自我更新抑制剂 Botch 的异位表达和促进分化的转录因子的过早诱导。线粒体动力学的变化通过驱动一种生理活性氧(ROS)介导的过程来调节干细胞命运决定,该过程触发了一个双重程序,通过 NRF2 介导的逆行信号来抑制自我更新并促进分化。这些发现揭示了线粒体动力学作为通过转录编程控制干细胞自我更新和命运决定的基本机制的上游调节剂。