Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
J Biol Chem. 2019 Sep 20;294(38):13852-13863. doi: 10.1074/jbc.REV118.000828. Epub 2019 Aug 5.
Mitochondria are considered highly plastic organelles. This plasticity enables the mitochondria to undergo morphological and functional changes in response to cellular demands. Stem cells also need to remain functionally plastic ( to have the ability to "decide" whether to remain quiescent or to undergo activation upon signaling cues to support tissue function and homeostasis). Mitochondrial plasticity is thought to enable this reshaping of stem cell functions, integrating signaling cues with stem cell outcomes. Indeed, recent evidence highlights the crucial role of maintaining mitochondrial plasticity for stem cell biology. For example, tricarboxylic acid (TCA) cycle metabolites generated and metabolized in the mitochondria serve as cofactors for epigenetic enzymes, thereby coupling mitochondrial metabolism and transcriptional regulation. Another layer of mitochondrial plasticity has emerged, pointing toward mitochondrial dynamics in regulating stem cell fate decisions. Imposing imbalanced mitochondrial dynamics by manipulating the expression levels of the key molecular regulators of this process influences cellular outcomes by changing the nuclear transcriptional program. Moreover, reactive oxygen species have also been shown to play an important role in regulating transcriptional profiles in stem cells. In this review, we focus on recent findings demonstrating that mitochondria are essential regulators of stem cell activation and fate decisions. We also discuss the suggested mechanisms and alternative routes for mitochondria-to-nucleus communications.
线粒体被认为是高度可塑的细胞器。这种可塑性使线粒体能够响应细胞的需求,发生形态和功能上的变化。干细胞也需要保持功能上的可塑性(有“决定”是否保持静止或在受到信号提示时激活的能力,以支持组织功能和动态平衡)。线粒体的可塑性被认为能够实现干细胞功能的这种重塑,将信号与干细胞的结果整合在一起。事实上,最近的证据强调了维持线粒体可塑性对于干细胞生物学的关键作用。例如,在线粒体中产生和代谢的三羧酸(TCA)循环代谢物可作为表观遗传酶的辅助因子,从而将线粒体代谢和转录调控联系起来。线粒体动态在调节干细胞命运决定方面的另一个可塑性层面已经出现,指出了这一过程的关键分子调节因子的不平衡线粒体动力学通过改变核转录程序来影响细胞结果。此外,活性氧也被证明在调节干细胞中的转录谱方面发挥着重要作用。在这篇综述中,我们重点介绍了最近的发现,这些发现表明线粒体是干细胞激活和命运决定的重要调节剂。我们还讨论了线粒体到细胞核通讯的建议机制和替代途径。