Suppr超能文献

线粒体在细胞命运调控中的可塑性。

Mitochondrial plasticity in cell fate regulation.

机构信息

Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.

Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel

出版信息

J Biol Chem. 2019 Sep 20;294(38):13852-13863. doi: 10.1074/jbc.REV118.000828. Epub 2019 Aug 5.

Abstract

Mitochondria are considered highly plastic organelles. This plasticity enables the mitochondria to undergo morphological and functional changes in response to cellular demands. Stem cells also need to remain functionally plastic ( to have the ability to "decide" whether to remain quiescent or to undergo activation upon signaling cues to support tissue function and homeostasis). Mitochondrial plasticity is thought to enable this reshaping of stem cell functions, integrating signaling cues with stem cell outcomes. Indeed, recent evidence highlights the crucial role of maintaining mitochondrial plasticity for stem cell biology. For example, tricarboxylic acid (TCA) cycle metabolites generated and metabolized in the mitochondria serve as cofactors for epigenetic enzymes, thereby coupling mitochondrial metabolism and transcriptional regulation. Another layer of mitochondrial plasticity has emerged, pointing toward mitochondrial dynamics in regulating stem cell fate decisions. Imposing imbalanced mitochondrial dynamics by manipulating the expression levels of the key molecular regulators of this process influences cellular outcomes by changing the nuclear transcriptional program. Moreover, reactive oxygen species have also been shown to play an important role in regulating transcriptional profiles in stem cells. In this review, we focus on recent findings demonstrating that mitochondria are essential regulators of stem cell activation and fate decisions. We also discuss the suggested mechanisms and alternative routes for mitochondria-to-nucleus communications.

摘要

线粒体被认为是高度可塑的细胞器。这种可塑性使线粒体能够响应细胞的需求,发生形态和功能上的变化。干细胞也需要保持功能上的可塑性(有“决定”是否保持静止或在受到信号提示时激活的能力,以支持组织功能和动态平衡)。线粒体的可塑性被认为能够实现干细胞功能的这种重塑,将信号与干细胞的结果整合在一起。事实上,最近的证据强调了维持线粒体可塑性对于干细胞生物学的关键作用。例如,在线粒体中产生和代谢的三羧酸(TCA)循环代谢物可作为表观遗传酶的辅助因子,从而将线粒体代谢和转录调控联系起来。线粒体动态在调节干细胞命运决定方面的另一个可塑性层面已经出现,指出了这一过程的关键分子调节因子的不平衡线粒体动力学通过改变核转录程序来影响细胞结果。此外,活性氧也被证明在调节干细胞中的转录谱方面发挥着重要作用。在这篇综述中,我们重点介绍了最近的发现,这些发现表明线粒体是干细胞激活和命运决定的重要调节剂。我们还讨论了线粒体到细胞核通讯的建议机制和替代途径。

相似文献

1
Mitochondrial plasticity in cell fate regulation.
J Biol Chem. 2019 Sep 20;294(38):13852-13863. doi: 10.1074/jbc.REV118.000828. Epub 2019 Aug 5.
2
Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.
Antioxid Redox Signal. 2018 Jul 10;29(2):149-168. doi: 10.1089/ars.2017.7273. Epub 2017 Oct 26.
3
Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate.
Cell Stem Cell. 2021 Mar 4;28(3):394-408. doi: 10.1016/j.stem.2021.02.011.
4
Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program.
Cell Stem Cell. 2016 Aug 4;19(2):232-247. doi: 10.1016/j.stem.2016.04.015. Epub 2016 May 26.
5
The role of mitochondria in stem cell fate and aging.
Development. 2018 Apr 13;145(8):dev143420. doi: 10.1242/dev.143420.
6
Emerging roles of mitochondrial functions and epigenetic changes in the modulation of stem cell fate.
Cell Mol Life Sci. 2024 Jan 12;81(1):26. doi: 10.1007/s00018-023-05070-6.
7
Stem cell plasticity and regenerative potential regulation through Ca-mediated mitochondrial nuclear crosstalk.
Mitochondrion. 2021 Jan;56:1-14. doi: 10.1016/j.mito.2020.10.002. Epub 2020 Oct 13.
8
Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal.
Annu Rev Cell Dev Biol. 2016 Oct 6;32:399-409. doi: 10.1146/annurev-cellbio-111315-125134. Epub 2016 Aug 1.
9
Mitochondrial biogenesis: pharmacological approaches.
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
10
Mitochondria: Major Regulators of Neural Development.
Neuroscientist. 2016 Aug;22(4):346-58. doi: 10.1177/1073858415585472. Epub 2015 May 6.

引用本文的文献

1
RNA-binding proteins as versatile metabolic regulators.
NPJ Metab Health Dis. 2025 Jan 13;3(1):1. doi: 10.1038/s44324-024-00044-z.
2
Relationship troubles at the mitochondrial level and what it might mean for human disease.
Open Biol. 2025 May;15(5):240331. doi: 10.1098/rsob.240331. Epub 2025 May 21.
3
Mitochondria - the CEO of the cell.
J Cell Sci. 2025 May 1;138(9). doi: 10.1242/jcs.263403.
4
Mitonuclear Communication in Stem Cell Function.
Cell Prolif. 2025 May;58(5):e13796. doi: 10.1111/cpr.13796. Epub 2024 Dec 26.
6
Mitochondrial network reorganization and transient expansion during oligodendrocyte generation.
Nat Commun. 2024 Aug 14;15(1):6979. doi: 10.1038/s41467-024-51016-2.
7
Substrates mimicking the blastocyst geometry revert pluripotent stem cell to naivety.
Nat Mater. 2024 Dec;23(12):1748-1758. doi: 10.1038/s41563-024-01971-4. Epub 2024 Aug 12.
8
Redox heterogeneity in mouse embryonic stem cells individualizes cell fate decisions.
Dev Cell. 2024 Aug 19;59(16):2118-2133.e8. doi: 10.1016/j.devcel.2024.07.008. Epub 2024 Aug 5.
9
Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future.
Neural Regen Res. 2025 Apr 1;20(4):946-959. doi: 10.4103/NRR.NRR-D-23-01612. Epub 2024 Apr 16.
10
Mitochondrial heterogeneity and adaptations to cellular needs.
Nat Cell Biol. 2024 May;26(5):674-686. doi: 10.1038/s41556-024-01410-1. Epub 2024 May 16.

本文引用的文献

1
Mitochondrial Proteolysis and Metabolic Control.
Cold Spring Harb Perspect Biol. 2019 Jul 1;11(7):a033936. doi: 10.1101/cshperspect.a033936.
2
MTCH2-mediated mitochondrial fusion drives exit from naïve pluripotency in embryonic stem cells.
Nat Commun. 2018 Dec 3;9(1):5132. doi: 10.1038/s41467-018-07519-w.
3
Metabolic regulation of chromatin modifications and gene expression.
J Cell Biol. 2018 Jul 2;217(7):2247-2259. doi: 10.1083/jcb.201803061. Epub 2018 May 14.
4
Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche.
Nat Med. 2018 Jun;24(6):782-791. doi: 10.1038/s41591-018-0030-x. Epub 2018 May 7.
5
Mitochondria and the dynamic control of stem cell homeostasis.
EMBO Rep. 2018 May;19(5). doi: 10.15252/embr.201745432. Epub 2018 Apr 16.
6
Spatiotemporal Control of Acetyl-CoA Metabolism in Chromatin Regulation.
Trends Biochem Sci. 2018 Jan;43(1):61-74. doi: 10.1016/j.tibs.2017.11.004. Epub 2017 Nov 23.
8
A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity.
Cell Rep. 2017 Aug 29;20(9):2144-2155. doi: 10.1016/j.celrep.2017.08.029.
9
Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.
Nat Cell Biol. 2017 Sep;19(9):1027-1036. doi: 10.1038/ncb3593. Epub 2017 Aug 14.
10
Mitochondrial Dynamics in Regulating the Unique Phenotypes of Cancer and Stem Cells.
Cell Metab. 2017 Jul 5;26(1):39-48. doi: 10.1016/j.cmet.2017.05.016. Epub 2017 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验