椰子:协变量辅助复合零假设检验及其在高通量实验数据可重复性分析中的应用

Coconut: covariate-assisted composite null hypothesis testing with applications to replicability analysis of high-throughput experimental data.

作者信息

Li Yan, Li Yanmei, Ma Han, Yue Zitong, Zhang Xin

机构信息

School of Computer Science and Technology, Changchun University of Science and Technology, 7186 Weixing Road, Changchun, 130022, Jilin, China.

School of Business, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

出版信息

BMC Bioinformatics. 2025 Jul 1;26(1):163. doi: 10.1186/s12859-025-06163-8.

Abstract

BACKGROUND

Multiple testing of composite null hypotheses is critical for identifying simultaneous signals across studies. While it is common to incorporate external information in simple null hypotheses, exploiting such auxiliary covariates to provide prior structural relationships among composite null hypotheses and boost the statistical power remains challenging.

RESULTS

We propose a robust and powerful covariate-assisted composite null hypothesis testing (CoCoNuT) procedure based on a Bayesian framework to identify replicable signals in two studies while asymptotically controlling the false discovery rate. CoCoNuT innovatively adopts a three-dimensional mixture model to consider two primary studies and an integrative auxiliary covariate jointly. While accounting for heterogeneity across studies, the local false discovery rate optimally captures cross-study and cross-feature information, providing improved rankings of feature importance.

CONCLUSIONS

Theoretical and empirical evaluations confirm the validity and efficiency of CoCoNuT. Extensive simulations demonstrate that CoCoNuT outperforms conventional methods that do not exploit auxiliary covariates while controlling the FDR. We apply CoCoNuT to schizophrenia genome-wide association studies, illustrating its higher power in identifying replicable genetic variants with the assistance of relevant auxiliary studies.

摘要

背景

对复合零假设进行多重检验对于识别跨研究的同步信号至关重要。虽然在简单零假设中纳入外部信息很常见,但利用此类辅助协变量来提供复合零假设之间的先验结构关系并提高统计功效仍然具有挑战性。

结果

我们基于贝叶斯框架提出了一种稳健且强大的协变量辅助复合零假设检验(CoCoNuT)程序,以在两项研究中识别可重复的信号,同时渐近控制错误发现率。CoCoNuT创新地采用三维混合模型来联合考虑两项主要研究和一个综合辅助协变量。在考虑研究间异质性的同时,局部错误发现率最优地捕捉跨研究和跨特征信息,提供改进的特征重要性排名。

结论

理论和实证评估证实了CoCoNuT的有效性和效率。广泛的模拟表明,CoCoNuT在控制错误发现率的同时优于未利用辅助协变量的传统方法。我们将CoCoNuT应用于精神分裂症全基因组关联研究,展示了其在相关辅助研究的帮助下识别可重复遗传变异的更高功效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索