Suppr超能文献

miRNAFold:用于在基因组中快速预测miRNA前体的网络服务器。

miRNAFold: a web server for fast miRNA precursor prediction in genomes.

作者信息

Tav Christophe, Tempel Sébastien, Poligny Laurent, Tahi Fariza

机构信息

IBISC-IBGBI, Université Evry, Genopole, 23 Boulevard de France, 91037 Evry CEDEX, France.

IBISC-IBGBI, Université Evry, Genopole, 23 Boulevard de France, 91037 Evry CEDEX, France Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France

出版信息

Nucleic Acids Res. 2016 Jul 8;44(W1):W181-4. doi: 10.1093/nar/gkw459. Epub 2016 May 29.

Abstract

Computational methods are required for prediction of non-coding RNAs (ncRNAs), which are involved in many biological processes, especially at post-transcriptional level. Among these ncRNAs, miRNAs have been largely studied and biologists need efficient and fast tools for their identification. In particular, ab initio methods are usually required when predicting novel miRNAs. Here we present a web server dedicated for miRNA precursors identification at a large scale in genomes. It is based on an algorithm called miRNAFold that allows predicting miRNA hairpin structures quickly with high sensitivity. miRNAFold is implemented as a web server with an intuitive and user-friendly interface, as well as a standalone version. The web server is freely available at: http://EvryRNA.ibisc.univ-evry.fr/miRNAFold.

摘要

预测非编码RNA(ncRNA)需要计算方法,这些非编码RNA参与许多生物过程,尤其是在转录后水平。在这些ncRNA中,microRNA(miRNA)已经得到了大量研究,生物学家需要高效快速的工具来识别它们。特别是,在预测新的miRNA时通常需要从头开始的方法。在这里,我们展示了一个专门用于在基因组中大规模识别miRNA前体的网络服务器。它基于一种名为miRNAFold的算法,该算法能够以高灵敏度快速预测miRNA发夹结构。miRNAFold被实现为一个具有直观且用户友好界面的网络服务器以及一个独立版本。该网络服务器可在以下网址免费获取:http://EvryRNA.ibisc.univ-evry.fr/miRNAFold

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c089/4987958/c583c5f16322/gkw459fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验