Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
Department of Mechanical and Aerospace Engineering, University of California , Irvine, California 92697, United States.
Nano Lett. 2016 Jul 13;16(7):4133-40. doi: 10.1021/acs.nanolett.6b00956. Epub 2016 May 31.
Thermal transport in silicon nanowires has captured the attention of scientists for understanding phonon transport at the nanoscale, and the thermoelectric figure-of-merit (ZT) reported in rough nanowires has inspired engineers to develop cost-effective waste heat recovery systems. Thermoelectric generators composed of silicon target high-temperature applications due to improved efficiency beyond 550 K. However, there have been no studies of thermal transport in silicon nanowires beyond room temperature. High-temperature measurements also enable studies of unanswered questions regarding the impact of surface boundaries and varying mode contributions as the highest vibrational modes are activated (Debye temperature of silicon is 645 K). Here, we develop a technique to investigate thermal transport in nanowires up to 700 K. Our thermal conductivity measurements on smooth silicon nanowires show the classical diameter dependence from 40 to 120 nm. In conjunction with Boltzmann transport equation, we also probe an increasing contribution of high-frequency phonons (optical phonons) in smooth silicon nanowires as the diameter decreases and the temperature increases. Thermal conductivity of rough silicon nanowires is significantly reduced throughout the temperature range, demonstrating a potential for efficient thermoelectric generation (e.g., ZT = 1 at 700 K).
硅纳米线中的热传输引起了科学家们的关注,因为它可以帮助我们理解纳米尺度上的声子传输,而粗糙纳米线中报告的热电优值ZT 激发了工程师们开发具有成本效益的废热回收系统。由于在 550 K 以上的效率提高,由硅制成的热电发电机在高温应用中受到关注。然而,目前还没有对室温以上硅纳米线中的热传输进行研究。高温测量还可以研究表面边界和不断变化的模式贡献的影响,因为最高振动模式被激活(硅的德拜温度为 645 K)。在这里,我们开发了一种在高达 700 K 的温度下研究纳米线中热传输的技术。我们对光滑硅纳米线的热导率测量显示出从 40 到 120nm 的经典直径依赖性。结合玻尔兹曼输运方程,我们还探测到随着直径减小和温度升高,光滑硅纳米线中高频声子(光学声子)的贡献增加。在整个温度范围内,粗糙硅纳米线的热导率显著降低,这表明其在高效热电发电方面具有潜力(例如,在 700 K 时 ZT = 1)。