Yang Lin, Huh Daihong, Ning Rui, Rapp Vi, Zeng Yuqiang, Liu Yunzhi, Ju Sucheol, Tao Yi, Jiang Yue, Beak Jihyun, Leem Juyoung, Kaur Sumanjeet, Lee Heon, Zheng Xiaolin, Prasher Ravi S
Energy Technology Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
Nat Commun. 2021 Jun 24;12(1):3926. doi: 10.1038/s41467-021-24208-3.
Thermoelectrics operating at high temperature can cost-effectively convert waste heat and compete with other zero-carbon technologies. Among different high-temperature thermoelectrics materials, silicon nanowires possess the combined attributes of cost effectiveness and mature manufacturing infrastructures. Despite significant breakthroughs in silicon nanowires based thermoelectrics for waste heat conversion, the figure of merit (ZT) or operating temperature has remained low. Here, we report the synthesis of large-area, wafer-scale arrays of porous silicon nanowires with ultra-thin Si crystallite size of ~4 nm. Concurrent measurements of thermal conductivity (κ), electrical conductivity (σ), and Seebeck coefficient (S) on the same nanowire show a ZT of 0.71 at 700 K, which is more than ~18 times higher than bulk Si. This ZT value is more than two times higher than any nanostructured Si-based thermoelectrics reported in the literature at 700 K. Experimental data and theoretical modeling demonstrate that this work has the potential to achieve a ZT of ~1 at 1000 K.
高温运行的热电器件能够经济高效地转换废热,并与其他零碳技术相竞争。在不同的高温热电材料中,硅纳米线兼具成本效益和成熟制造基础设施的综合特性。尽管基于硅纳米线的废热转换热电技术取得了重大突破,但其优值(ZT)或工作温度仍然较低。在此,我们报告了大面积、晶圆级多孔硅纳米线阵列的合成,其超薄硅微晶尺寸约为4纳米。在同一纳米线上同时测量热导率(κ)、电导率(σ)和塞贝克系数(S),结果表明在700K时ZT为0.71,比块状硅高出约18倍以上。该ZT值比文献报道的700K时任何基于纳米结构硅的热电材料高出两倍以上。实验数据和理论模型表明,这项工作有潜力在1000K时实现ZT约为1。