Puetzer Jennifer L, Bonassar Lawrence J
1 Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York.
2 Departments of Materials and Bioengineering, Imperial College London, London, United Kingdom .
Tissue Eng Part A. 2016 Jul;22(13-14):907-16. doi: 10.1089/ten.TEA.2015.0519. Epub 2016 Jun 27.
The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.
半月板是一种致密的纤维软骨组织,它通过独特的胶原纤维组织结构承受膝关节的复杂负荷。仅通过压缩或拉伸加载来处理工程化半月板的尝试未能在微观尺度或解剖尺度上重现复杂结构。在此,我们表明,对解剖形状的组织工程半月板构建体进行轴向加载,会产生与膝关节在完全伸展时加载时半月板中所见的局部应变空间分布相似的情况。这种加载促使形成具有大型有组织胶原纤维、机械各向异性水平以及与天然组织相匹配的压缩模量的组织。加载加速了天然尺寸且排列整齐的周向和径向胶原纤维的发育。这些加载模式包含拉伸和压缩成分,增强了半月板的主要生化和功能特性,加载使糖胺聚糖(GAG)积累显著提高200 - 250%,胶原积累提高40 - 55%,平衡模量提高1000 - 1800%,拉伸模量提高500 - 1200%(径向和周向)。此外,本研究表明机械环境的局部变化驱动单个构建体内异质组织的发育和组织化,突出了重现天然加载环境的重要性。加载的半月板形成了类似软骨的组织,细胞呈圆形,胶原基质致密,在受压更大的角部GAG积累增加,在受拉更大的外侧2/3形成富含纤维胶原的组织,类似于天然半月板。加载的构建体达到了以往任何工程化半月板都未见过的组织化水平,并显示出作为半月板替代物的巨大潜力。