Suppr超能文献

通过基质扩增和定向重塑的结合来构建自组装的新型类晶体。

Engineering self-assembled neomenisci through combination of matrix augmentation and directional remodeling.

机构信息

Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697.

出版信息

Acta Biomater. 2020 Jun;109:73-81. doi: 10.1016/j.actbio.2020.04.019. Epub 2020 Apr 25.

Abstract

Knee meniscus injury is frequent, resulting in over 1 million surgeries annually in the United States and Europe. Because of the near-avascularity of this fibrocartilaginous tissue and its intrinsic lack of healing, tissue engineering has been proposed as a solution for meniscus repair and replacement. This study describes an approach employing bioactive stimuli to enhance both extracellular matrix content and organization of neomenisci toward augmenting their mechanical properties. Self-assembled fibrocartilages were treated with TGF-β1, chondroitinase ABC, and lysyl oxidase-like 2 (collectively termed TCL) in addition to lysophosphatidic acid (LPA). TCL + LPA treatment synergistically improved circumferential tensile stiffness and strength, significantly enhanced collagen and pyridinoline crosslink content per dry weight, and achieved tensile anisotropy (circumferential/radial) values of neomenisci close to 4. This study utilizes a combination of bioactive stimuli for use in tissue engineering studies, providing a promising path toward deploying these neomenisci as functional repair and replacement tissues. STATEMENT OF SIGNIFICANCE: This study utilizes a scaffold-free approach, which strays from the tissue engineering paradigm of using scaffolds with cells and bioactive factors to engineer neotissue. While self-assembled neomenisci have attained compressive properties akin to native tissue, tensile properties still require improvement before being able to deploy engineered neomenisci as functional tissue repair or replacement options. In order to augment tensile properties, this study utilized bioactive factors known to augment matrix content in combination with a soluble factor that enhances matrix organization and anisotropy via cell traction forces. Using a bioactive factor to enhance matrix organization mitigates the need for bioreactors used to apply mechanical stimuli or scaffolds to induce proper fiber alignment.

摘要

膝关节半月板损伤很常见,导致美国和欧洲每年有超过 100 万例手术。由于这种纤维软骨组织的近无血管性及其内在的缺乏愈合能力,组织工程已被提议作为半月板修复和替代的一种解决方案。本研究描述了一种利用生物活性刺激物来增强新生半月板的细胞外基质含量和组织方式,以增强其机械性能的方法。自组装纤维软骨在用 TGF-β1、软骨素酶 ABC 和赖氨酰氧化酶样 2(统称为 TCL)处理的同时,还添加了溶血磷脂酸(LPA)。TCL+LPA 治疗协同显著提高了周向拉伸刚度和强度,显著增加了胶原和吡啶交联物的含量/干重,实现了接近 4 的周向/径向拉伸各向异性值。本研究利用了一系列生物活性刺激物的组合,用于组织工程研究,为将这些新生半月板作为功能性修复和替代组织提供了一个有前途的途径。

意义陈述

本研究利用了一种无支架方法,这种方法偏离了使用带有细胞和生物活性因子的支架来工程新生组织的组织工程范例。虽然自组装的新生半月板已经达到了类似于天然组织的压缩性能,但在能够将工程化的新生半月板作为功能性组织修复或替代选择之前,其拉伸性能仍需要提高。为了增强拉伸性能,本研究利用了已知能增加基质含量的生物活性因子,同时利用一种能通过细胞牵引力增强基质组织和各向异性的可溶性因子。利用生物活性因子来增强基质组织可以减少对生物反应器的需求,这些生物反应器用于施加机械刺激或支架来诱导适当的纤维排列。

相似文献

4
Engineering functional anisotropy in fibrocartilage neotissues.在纤维软骨新生组织中构建功能各向异性。
Biomaterials. 2013 Dec;34(38):9980-9. doi: 10.1016/j.biomaterials.2013.09.026. Epub 2013 Sep 24.

引用本文的文献

本文引用的文献

6
Structure-Function relationships of equine menisci.马半月板的结构-功能关系。
PLoS One. 2018 Mar 9;13(3):e0194052. doi: 10.1371/journal.pone.0194052. eCollection 2018.
10
Role of scaffold mean pore size in meniscus regeneration.支架平均孔径在半月板再生中的作用。
Acta Biomater. 2016 Oct 1;43:314-326. doi: 10.1016/j.actbio.2016.07.050. Epub 2016 Jul 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验