Department of Biology, University of Washington, Seattle, Washington 98195, USA.
Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.
Nat Plants. 2016 Mar 2;2:16010. doi: 10.1038/nplants.2016.10.
Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.
在过去几十年中,对模式植物的分子遗传学研究已经确定了许多控制发育、代谢和环境反应的关键基因和途径。最近的技术和信息学进步带来了前所未有的大量数据,这些数据可能揭示了植物作为生物系统的基本原理。新出现的合成生物学和相关分子工程方法学科就是建立在这一坚实的基础之上。如今,可以在异源生物中重新构建植物调控途径,以识别和操纵影响信号输出的参数。此外,可以设计和引入包括受体、配体、信号转导成分、表观遗传机制和分子马达在内的调控回路,以可预测的方式在植物中创造新的特性。在这里,我们简要回顾了植物合成生物学的历史,并介绍了该方法的一些重要的最新实例,重点讨论了参考植物拟南芥所产生的知识如何促进了这一新学科的快速发展,并探讨了潜在的未来方向。