Min Hoon-Ki, Ross Erika K, Jo Hang Joon, Cho Shinho, Settell Megan L, Jeong Ju Ho, Duffy Penelope S, Chang Su-Youne, Bennet Kevin E, Blaha Charles D, Lee Kendall H
Department of Neurologic Surgery, Department of Physiology and Biomedical Engineering, Department of Radiology, and.
Department of Neurologic Surgery.
J Neurosci. 2016 Jun 1;36(22):6022-9. doi: 10.1523/JNEUROSCI.0403-16.2016.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for medically refractory Parkinson's disease. Although DBS has recognized clinical utility, its biologic mechanisms are not fully understood, and whether dopamine release is a potential factor in those mechanisms is in dispute. We tested the hypothesis that STN DBS-evoked dopamine release depends on the precise location of the stimulation site in the STN and the site of recording in the caudate and putamen. We conducted DBS with miniature, scaled-to-animal size, multicontact electrodes and used functional magnetic resonance imaging to identify the best dopamine recording site in the brains of nonhuman primates (rhesus macaques), which are highly representative of human brain anatomy and circuitry. Real-time stimulation-evoked dopamine release was monitored using in vivo fast-scan cyclic voltammetry. This study demonstrates that STN DBS-evoked dopamine release can be reduced or increased by redirecting STN stimulation to a slightly different site.
Electrical stimulation of deep structures of the brain, or deep brain stimulation (DBS), is used to modulate pathological brain activity. However, technological limitations and incomplete understanding of the therapeutic mechanisms of DBS prevent personalization of this therapy and may contribute to less-than-optimal outcomes. We have demonstrated that DBS coincides with changes in dopamine neurotransmitter release in the basal ganglia. Here we mapped relationships between DBS and changes in neurochemical activity. Importantly, this study shows that DBS-evoked dopamine release can be reduced or increased by refocusing the DBS on a slightly different stimulation site.
丘脑底核(STN)的深部脑刺激(DBS)是治疗药物难治性帕金森病的有效方法。尽管DBS具有公认的临床效用,但其生物学机制尚未完全了解,多巴胺释放是否是这些机制中的潜在因素仍存在争议。我们测试了以下假设:STN DBS诱发的多巴胺释放取决于刺激部位在STN中的精确位置以及尾状核和壳核中的记录部位。我们使用微型、按动物尺寸缩放的多触点电极进行DBS,并使用功能磁共振成像来确定非人灵长类动物(恒河猴)大脑中最佳的多巴胺记录部位,这些动物在人类脑解剖结构和神经回路方面具有高度代表性。使用体内快速扫描循环伏安法监测实时刺激诱发的多巴胺释放。这项研究表明,将STN刺激重新导向稍有不同的部位可减少或增加STN DBS诱发的多巴胺释放。
对脑深部结构进行电刺激,即深部脑刺激(DBS),用于调节病理性脑活动。然而,技术限制以及对DBS治疗机制的不完全理解阻碍了这种治疗的个性化,可能导致疗效欠佳。我们已经证明DBS与基底神经节中多巴胺神经递质释放的变化一致。在这里,我们绘制了DBS与神经化学活动变化之间的关系。重要的是,这项研究表明,通过将DBS重新聚焦在稍有不同的刺激部位,可以减少或增加DBS诱发的多巴胺释放。