Suppr超能文献

封面文章:疾病诱导的纳米颗粒生物冠形成差异及其毒理学后果

From the Cover: Disease-Induced Disparities in Formation of the Nanoparticle-Biocorona and the Toxicological Consequences.

作者信息

Shannahan Jonathan H, Fritz Kristofer S, Raghavendra Achyut J, Podila Ramakrishna, Persaud Indushekar, Brown Jared M

机构信息

*Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;

Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634; Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, South Carolina, 29625.

出版信息

Toxicol Sci. 2016 Aug;152(2):406-16. doi: 10.1093/toxsci/kfw097. Epub 2016 Jun 2.

Abstract

Nanoparticle (NP) association with macromolecules in a physiological environment forms a biocorona (BC), which alters NP distribution, activity, and toxicity. While BC formation is dependent on NP physicochemical properties, little information exists on the influence of the physiological environment. Obese individuals and those with cardiovascular disease exist with altered serum chemistry, which is expected to influence BC formation and NP toxicity. We hypothesize that a BC formed on NPs following incubation in hyperlipidemic serum will result in altered NP-BC protein content, cellular association, and toxicity compared to normal serum conditions. We utilized Fe3O4 NPs, which are being developed as MRI contrast and tumor targeting agents to test our hypothesis. We used rat aortic endothelial cells (RAECs) within a dynamic flow in vitro exposure system to more accurately depict the in vivo environment. A BC was formed on 20nm PVP-suspended Fe3O4 NPs following incubation in water, 10% normal or hyperlipidemic rat serum. Addition of BCs resulted in increased hydrodynamic size and decreased surface charge. More cholesterol associated with Fe3O4 NPs after incubation in hyperlipidemic as compared with normal serum. Using quantitative proteomics, we identified unique differences in BC protein components between the 2 serum types. Under flow conditions, formation of a BC from both serum types reduced RAECs association of Fe3O4 NPs. Addition of BCs was found to exacerbate RAECs inflammatory gene responses to Fe3O4 NPs (Fe3O4-hyperlipidemic > Fe3O4-normal > Fe3O4) including increased expression of IL-6, TNF-α, Cxcl-2, VCAM-1, and ICAM-1. Overall, these findings demonstrate that disease-induced variations in physiological environments have a significant impact NP-BC formation, cellular association, and cell response.

摘要

在生理环境中,纳米颗粒(NP)与大分子结合形成生物冠(BC),这会改变NP的分布、活性和毒性。虽然BC的形成取决于NP的物理化学性质,但关于生理环境影响的信息却很少。肥胖个体和患有心血管疾病的人血清化学成分发生改变,预计这会影响BC的形成和NP毒性。我们假设,与正常血清条件相比,在高脂血症血清中孵育后在NP上形成的BC将导致NP - BC蛋白质含量、细胞结合及毒性发生改变。我们利用正被开发用作磁共振成像造影剂和肿瘤靶向剂的Fe3O4纳米颗粒来验证我们的假设。我们在动态流动体外暴露系统中使用大鼠主动脉内皮细胞(RAEC),以更准确地描绘体内环境。在水中、10%正常或高脂血症大鼠血清中孵育后,20nm聚乙烯吡咯烷酮(PVP)悬浮的Fe3O4纳米颗粒上形成了BC。添加BC会导致流体动力学尺寸增加和表面电荷减少。与正常血清相比,在高脂血症血清中孵育后,更多胆固醇与Fe3O4纳米颗粒结合。使用定量蛋白质组学,我们确定了两种血清类型之间BC蛋白质成分的独特差异。在流动条件下,两种血清类型形成的BC均降低了RAEC对Fe3O4纳米颗粒的结合。发现添加BC会加剧RAEC对Fe3O4纳米颗粒的炎症基因反应(Fe3O4 - 高脂血症>Fe3O4 - 正常>Fe3O4),包括白细胞介素 - 6(IL - 6)、肿瘤坏死因子 - α(TNF - α)、趋化因子配体2(Cxcl - 2)、血管细胞黏附分子 - 1(VCAM - 1)和细胞间黏附分子 - 1(ICAM - 1)表达增加。总体而言,这些发现表明,疾病引起的生理环境变化对NP - BC的形成、细胞结合及细胞反应有重大影响。

相似文献

1
2
Experimental challenges regarding the in vitro investigation of the nanoparticle-biocorona in disease states.
Toxicol In Vitro. 2018 Sep;51:40-49. doi: 10.1016/j.tiv.2018.05.003. Epub 2018 May 5.
3
Altered formation of the iron oxide nanoparticle-biocorona due to individual variability and exercise.
Environ Toxicol Pharmacol. 2018 Sep;62:215-226. doi: 10.1016/j.etap.2018.07.014. Epub 2018 Jul 29.
5
An Integrative Proteomic/Lipidomic Analysis of the Gold Nanoparticle Biocorona in Healthy and Obese Conditions.
Appl In Vitro Toxicol. 2019 Sep 1;5(3):150-166. doi: 10.1089/aivt.2019.0005. Epub 2019 Sep 17.
7
Size-dependent tissue-specific biological effects of core-shell structured FeO@SiO-NH nanoparticles.
J Nanobiotechnology. 2019 Dec 23;17(1):124. doi: 10.1186/s12951-019-0561-4.
8
Biocorona formation contributes to silver nanoparticle induced endoplasmic reticulum stress.
Ecotoxicol Environ Saf. 2019 Apr 15;170:77-86. doi: 10.1016/j.ecoenv.2018.11.107. Epub 2018 Dec 4.
9
Effects of starch-coating of magnetite nanoparticles on cellular uptake, toxicity and gene expression profiles in adult zebrafish.
Sci Total Environ. 2018 May 1;622-623:930-941. doi: 10.1016/j.scitotenv.2017.12.018. Epub 2017 Dec 13.
10
Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles.
Nanotoxicology. 2015 May;9 Suppl 1:44-56. doi: 10.3109/17435390.2013.847505. Epub 2013 Nov 14.

引用本文的文献

1
Protective Effect of Silver Nanoparticles Against Cytosine Arabinoside Genotoxicity: An In Vivo Micronucleus Assay.
Int J Environ Res Public Health. 2024 Dec 18;21(12):1689. doi: 10.3390/ijerph21121689.
2
Quantum Dot Imaging Agents: Haematopoietic Cell Interactions and Biocompatibility.
Cells. 2024 Feb 18;13(4):354. doi: 10.3390/cells13040354.
3
Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models.
Front Bioeng Biotechnol. 2020 Dec 10;8:602646. doi: 10.3389/fbioe.2020.602646. eCollection 2020.
4
An Integrative Proteomic/Lipidomic Analysis of the Gold Nanoparticle Biocorona in Healthy and Obese Conditions.
Appl In Vitro Toxicol. 2019 Sep 1;5(3):150-166. doi: 10.1089/aivt.2019.0005. Epub 2019 Sep 17.
5
Biocorona-induced modifications in engineered nanomaterial-cellular interactions impacting biomedical applications.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 May;12(3):e1608. doi: 10.1002/wnan.1608. Epub 2019 Dec 1.
7
Formation of a protein corona influences the biological identity of nanomaterials.
Rep Pract Oncol Radiother. 2018 Jul-Aug;23(4):300-308. doi: 10.1016/j.rpor.2018.05.005. Epub 2018 May 28.
8
Altered formation of the iron oxide nanoparticle-biocorona due to individual variability and exercise.
Environ Toxicol Pharmacol. 2018 Sep;62:215-226. doi: 10.1016/j.etap.2018.07.014. Epub 2018 Jul 29.
9
Experimental challenges regarding the in vitro investigation of the nanoparticle-biocorona in disease states.
Toxicol In Vitro. 2018 Sep;51:40-49. doi: 10.1016/j.tiv.2018.05.003. Epub 2018 May 5.
10
The biocorona: a challenge for the biomedical application of nanoparticles.
Nanotechnol Rev. 2017 Aug;6(4):345-353. doi: 10.1515/ntrev-2016-0098. Epub 2017 Jan 20.

本文引用的文献

2
A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO.
Nanoscale. 2015 Dec 21;7(47):20055-62. doi: 10.1039/c5nr06630a. Epub 2015 Nov 16.
4
Modulatory Role of Surface Coating of Superparamagnetic Iron Oxide Nanoworms in Complement Opsonization and Leukocyte Uptake.
ACS Nano. 2015 Nov 24;9(11):10758-68. doi: 10.1021/acsnano.5b05061. Epub 2015 Oct 21.
6
Implications of scavenger receptors in the safe development of nanotherapeutics.
Receptors Clin Investig. 2015;2(3):e811. doi: 10.14800/rci.811.
7
The effect of shear flow on nanoparticle agglomeration and deposition in in vitro dynamic flow models.
Nanotoxicology. 2016;10(1):74-83. doi: 10.3109/17435390.2015.1018978. Epub 2015 May 11.
8
Multiscale Imaging of Nanoparticle Drug Delivery.
Curr Drug Targets. 2015;16(6):560-70. doi: 10.2174/1389450116666150202163022.
9
Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation.
Toxicol In Vitro. 2015 Feb;29(1):195-203. doi: 10.1016/j.tiv.2014.10.008.
10
Progress in the delivery of nanoparticle constructs: towards clinical translation.
Curr Opin Pharmacol. 2014 Oct;18:120-8. doi: 10.1016/j.coph.2014.09.019. Epub 2014 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验