Dietz Karl-Josef, Turkan Ismail, Krieger-Liszkay Anja
University of Bielefeld, Faculty of Biology, Department of Biochemistry and Physiology of Plants, D-33615 Bielefeld, Germany (K.-J.D.);Ege University, Faculty of Science, Department of Biology, TR-35100 Izmir, Turkey (I.T.); andInstitute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France (A.K.-L.)
University of Bielefeld, Faculty of Biology, Department of Biochemistry and Physiology of Plants, D-33615 Bielefeld, Germany (K.-J.D.);Ege University, Faculty of Science, Department of Biology, TR-35100 Izmir, Turkey (I.T.); andInstitute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France (A.K.-L.).
Plant Physiol. 2016 Jul;171(3):1541-50. doi: 10.1104/pp.16.00375. Epub 2016 Jun 2.
Photosynthesis is a high-rate redox metabolic process that is subjected to rapid changes in input parameters, particularly light. Rapid transients of photon capture, electron fluxes, and redox potentials during photosynthesis cause reactive oxygen species (ROS) to be released, including singlet oxygen, superoxide anion radicals, and hydrogen peroxide. Thus, the photosynthesizing chloroplast functions as a conditional source of important redox and ROS information, which is exploited to tune processes both inside the chloroplast and, following retrograde release or processing, in the cytosol and nucleus. Analyses of mutants and comparative transcriptome profiling have led to the identification of these processes and associated players and have allowed the specificity and generality of response patterns to be defined. The release of ROS and oxidation products, envelope permeabilization (for larger molecules), and metabolic interference with mitochondria and peroxisomes produce an intricate ROS and redox signature, which controls acclimation processes. This photosynthesis-related ROS and redox information feeds into various pathways (e.g. the mitogen-activated protein kinase and OXI1 signaling pathways) and controls processes such as gene expression and translation.
光合作用是一个高速率的氧化还原代谢过程,其输入参数,尤其是光照,会发生快速变化。光合作用过程中光子捕获、电子通量和氧化还原电位的快速瞬变会导致活性氧(ROS)的释放,包括单线态氧、超氧阴离子自由基和过氧化氢。因此,进行光合作用的叶绿体作为重要的氧化还原和ROS信息的条件性来源,可用于调节叶绿体内部以及逆行释放或加工后在细胞质和细胞核中的过程。对突变体的分析和比较转录组分析已导致对这些过程及相关参与者的鉴定,并能够定义响应模式的特异性和普遍性。ROS和氧化产物的释放、包膜通透性(针对较大分子)以及对线粒体和过氧化物酶体的代谢干扰产生了复杂的ROS和氧化还原特征,该特征控制着适应过程。这种与光合作用相关的ROS和氧化还原信息输入到各种途径(例如丝裂原活化蛋白激酶和OXI1信号通路)中,并控制基因表达和翻译等过程。