Suppr超能文献

利用神经网络和粗糙集技术预测病毒突变。

The prediction of virus mutation using neural networks and rough set techniques.

作者信息

Salama Mostafa A, Hassanien Aboul Ella, Mostafa Ahmad

机构信息

British University in Egypt (BUE), Cairo, Egypt ; Scientific Research Group in Egypt, (SRGE), Cairo, Egypt.

Cairo University, Cairo, Egypt ; Scientific Research Group in Egypt, (SRGE), Cairo, Egypt.

出版信息

EURASIP J Bioinform Syst Biol. 2016 May 13;2016(1):10. doi: 10.1186/s13637-016-0042-0. eCollection 2016 Dec.

Abstract

Viral evolution remains to be a main obstacle in the effectiveness of antiviral treatments. The ability to predict this evolution will help in the early detection of drug-resistant strains and will potentially facilitate the design of more efficient antiviral treatments. Various tools has been utilized in genome studies to achieve this goal. One of these tools is machine learning, which facilitates the study of structure-activity relationships, secondary and tertiary structure evolution prediction, and sequence error correction. This work proposes a novel machine learning technique for the prediction of the possible point mutations that appear on alignments of primary RNA sequence structure. It predicts the genotype of each nucleotide in the RNA sequence, and proves that a nucleotide in an RNA sequence changes based on the other nucleotides in the sequence. Neural networks technique is utilized in order to predict new strains, then a rough set theory based algorithm is introduced to extract these point mutation patterns. This algorithm is applied on a number of aligned RNA isolates time-series species of the Newcastle virus. Two different data sets from two sources are used in the validation of these techniques. The results show that the accuracy of this technique in predicting the nucleotides in the new generation is as high as 75 %. The mutation rules are visualized for the analysis of the correlation between different nucleotides in the same RNA sequence.

摘要

病毒进化仍然是抗病毒治疗有效性的主要障碍。预测这种进化的能力将有助于早期发现耐药菌株,并有可能促进更有效的抗病毒治疗方案的设计。基因组研究中已使用各种工具来实现这一目标。其中一种工具是机器学习,它有助于研究结构-活性关系、二级和三级结构进化预测以及序列错误校正。这项工作提出了一种新颖的机器学习技术,用于预测出现在初级RNA序列结构比对上的可能点突变。它预测RNA序列中每个核苷酸的基因型,并证明RNA序列中的一个核苷酸会根据序列中的其他核苷酸而发生变化。利用神经网络技术来预测新菌株,然后引入一种基于粗糙集理论的算法来提取这些点突变模式。该算法应用于纽卡斯尔病毒的多个比对RNA分离株时间序列物种。使用来自两个来源的两个不同数据集对这些技术进行验证。结果表明,该技术预测新一代核苷酸的准确率高达75%。对突变规则进行可视化处理,以分析同一RNA序列中不同核苷酸之间的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e7e/5270457/555b20280266/13637_2016_42_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验