Suppr超能文献

通过脑连接信息流模式对运动想象任务进行辨别。

Discrimination of motor imagery tasks via information flow pattern of brain connectivity.

作者信息

Liang Shuang, Choi Kup-Sze, Qin Jing, Wang Qiong, Pang Wai-Man, Heng Pheng-Ann

机构信息

Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China.

School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.

出版信息

Technol Health Care. 2016 Apr 29;24 Suppl 2:S795-801. doi: 10.3233/THC-161212.

Abstract

BACKGROUND

The effective connectivity refers explicitly to the influence that one neural system exerts over another in frequency domain. To investigate the propagation of neuronal activity in certain frequency can help us reveal the mechanisms of information processing by brain.

OBJECTIVE

This study investigates the detection of effective connectivity and analyzes the complex brain network connection mode associated with motor imagery (MI) tasks.

METHODS

The effective connectivity among the primary motor area is firstly explored using partial directed coherence (PDC) combined with multivariate empirical mode decomposition (MEMD) based on electroencephalography (EEG) data. Then a new approach is proposed to analyze the connection mode of the complex brain network via the information flow pattern.

RESULTS

Our results demonstrate that significant effective connectivity exists in the bilateral hemisphere during the tasks, regardless of the left-/right-hand MI tasks. Furthermore, the out-in rate results of the information flow reveal the existence of the contralateral lateralization. The classification performance of left-/right-hand MI tasks can be improved by careful selection of intrinsic mode functions (IMFs).

CONCLUSION

The proposed method can provide efficient features for the detection of MI tasks and has great potential to be applied in brain computer interface (BCI).

摘要

背景

有效连接明确指的是一个神经系统在频域中对另一个神经系统施加的影响。研究特定频率下神经元活动的传播有助于我们揭示大脑信息处理的机制。

目的

本研究调查有效连接的检测,并分析与运动想象(MI)任务相关的复杂脑网络连接模式。

方法

首先基于脑电图(EEG)数据,使用偏相干(PDC)结合多变量经验模态分解(MEMD)探索初级运动区之间的有效连接。然后提出一种新方法,通过信息流模式分析复杂脑网络的连接模式。

结果

我们的结果表明,在任务期间双侧半球存在显著的有效连接,无论左手/右手MI任务如何。此外,信息流的出入率结果揭示了对侧偏侧化的存在。通过仔细选择本征模函数(IMF)可以提高左手/右手MI任务的分类性能。

结论

所提出的方法可为MI任务的检测提供有效特征,在脑机接口(BCI)中具有很大的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验