Ulirsch Jacob C, Nandakumar Satish K, Wang Li, Giani Felix C, Zhang Xiaolan, Rogov Peter, Melnikov Alexandre, McDonel Patrick, Do Ron, Mikkelsen Tarjei S, Sankaran Vijay G
Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
Cell. 2016 Jun 2;165(6):1530-1545. doi: 10.1016/j.cell.2016.04.048.
Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to simultaneously screen 2,756 variants in strong linkage disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with endogenous erythroid regulatory activity. Across 23 sentinel variants, we conservatively identified 32 MPRA functional variants (MFVs). We used targeted genome editing to demonstrate endogenous enhancer activity across 3 MFVs that predominantly affect the transcription of SMIM1, RBM38, and CD164. Functional follow-up of RBM38 delineates a key role for this gene in the alternative splicing program occurring during terminal erythropoiesis. Finally, we provide evidence for how common GWAS-nominated variants can disrupt cell-type-specific transcriptional regulatory pathways.
全基因组关联研究(GWAS)已成功识别出数千种常见基因变异与人类疾病表型之间的关联,但这些变异大多是非编码的,通常需要进行基因精细定位、表观基因组分析和个体报告基因检测来确定潜在的因果变异。我们采用大规模平行报告基因检测(MPRA)来同时筛选与75个与红细胞性状相关的哨兵变异处于强连锁不平衡状态的2756个变异。我们表明,该检测可识别具有内源性红系调节活性的元件。在23个哨兵变异中,我们保守地鉴定出32个MPRA功能变异(MFV)。我们使用靶向基因组编辑来证明3个主要影响SMIM1、RBM38和CD164转录的MFV具有内源性增强子活性。对RBM38的功能追踪揭示了该基因在终末红细胞生成过程中发生的可变剪接程序中的关键作用。最后,我们提供了常见的GWAS提名变异如何破坏细胞类型特异性转录调控途径的证据。