Suppr超能文献

用于确定非编码基因组功能的高通量方法。

High-Throughput Approaches to Pinpoint Function within the Noncoding Genome.

作者信息

Montalbano Antonino, Canver Matthew C, Sanjana Neville E

机构信息

New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

Mol Cell. 2017 Oct 5;68(1):44-59. doi: 10.1016/j.molcel.2017.09.017.

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas nuclease system is a powerful tool for genome editing, and its simple programmability has enabled high-throughput genetic and epigenetic studies. These high-throughput approaches offer investigators a toolkit for functional interrogation of not only protein-coding genes but also noncoding DNA. Historically, noncoding DNA has lacked the detailed characterization that has been applied to protein-coding genes in large part because there has not been a robust set of methodologies for perturbing these regions. Although the majority of high-throughput CRISPR screens have focused on the coding genome to date, an increasing number of CRISPR screens targeting noncoding genomic regions continue to emerge. Here, we review high-throughput CRISPR-based approaches to uncover and understand functional elements within the noncoding genome and discuss practical aspects of noncoding library design and screen analysis.

摘要

成簇规律间隔短回文重复序列(CRISPR)-Cas核酸酶系统是一种强大的基因组编辑工具,其简单的可编程性推动了高通量遗传和表观遗传研究。这些高通量方法为研究人员提供了一个工具包,不仅可用于对蛋白质编码基因进行功能研究,还可用于对非编码DNA进行功能研究。从历史上看,非编码DNA缺乏对蛋白质编码基因所进行的详细表征,这在很大程度上是因为一直没有一套强大的方法来干扰这些区域。尽管到目前为止,大多数高通量CRISPR筛选都集中在编码基因组上,但越来越多针对非编码基因组区域的CRISPR筛选不断涌现。在这里,我们综述了基于CRISPR的高通量方法,以揭示和理解非编码基因组中的功能元件,并讨论非编码文库设计和筛选分析的实际问题。

相似文献

1
High-Throughput Approaches to Pinpoint Function within the Noncoding Genome.
Mol Cell. 2017 Oct 5;68(1):44-59. doi: 10.1016/j.molcel.2017.09.017.
2
Functional interrogation of non-coding DNA through CRISPR genome editing.
Methods. 2017 May 15;121-122:118-129. doi: 10.1016/j.ymeth.2017.03.008. Epub 2017 Mar 10.
3
Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes.
Mol Cell. 2017 Oct 5;68(1):26-43. doi: 10.1016/j.molcel.2017.09.029.
4
Genome-scale CRISPR pooled screens.
Anal Biochem. 2017 Sep 1;532:95-99. doi: 10.1016/j.ab.2016.05.014. Epub 2016 Jun 1.
5
CRISPR/Cas9 in Genome Editing and Beyond.
Annu Rev Biochem. 2016 Jun 2;85:227-64. doi: 10.1146/annurev-biochem-060815-014607. Epub 2016 Apr 25.
6
Conditional Control of CRISPR/Cas9 Function.
Angew Chem Int Ed Engl. 2016 Apr 25;55(18):5394-9. doi: 10.1002/anie.201511441. Epub 2016 Mar 21.
7
[CRISPR/CAS9, the King of Genome Editing Tools].
Mol Biol (Mosk). 2017 Jul-Aug;51(4):582-594. doi: 10.7868/S0026898417040036.
8
Precision genome editing in the CRISPR era.
Biochem Cell Biol. 2017 Apr;95(2):187-201. doi: 10.1139/bcb-2016-0137. Epub 2016 Sep 29.
9
The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit.
Mol Cell. 2017 Oct 5;68(1):15-25. doi: 10.1016/j.molcel.2017.09.007.
10
Optimization of genome editing through CRISPR-Cas9 engineering.
Bioengineered. 2016 Apr;7(3):166-74. doi: 10.1080/21655979.2016.1189039.

引用本文的文献

2
Activation of the imprinted Prader-Willi syndrome locus by CRISPR-based epigenome editing.
Cell Genom. 2025 Feb 12;5(2):100770. doi: 10.1016/j.xgen.2025.100770.
3
Functional RNA mining using random high-throughput screening.
Nucleic Acids Res. 2025 Jan 11;53(2). doi: 10.1093/nar/gkae1173.
4
Targeting DLBCL by mutation-specific disruption of cancer-driving oncogenes.
Front Genome Ed. 2024 Oct 14;6:1427322. doi: 10.3389/fgeed.2024.1427322. eCollection 2024.
5
Discovering the hidden function in fungal genomes.
Nat Commun. 2024 Sep 19;15(1):8219. doi: 10.1038/s41467-024-52568-z.
6
Activation of the imprinted Prader-Willi Syndrome locus by CRISPR-based epigenome editing.
bioRxiv. 2024 Mar 4:2024.03.03.583177. doi: 10.1101/2024.03.03.583177.
7
Techniques for investigating lncRNA transcript functions in neurodevelopment.
Mol Psychiatry. 2024 Apr;29(4):874-890. doi: 10.1038/s41380-023-02377-5. Epub 2023 Dec 25.
9
The Role of the Exonic lncRNA PRKDC-210 in Transcription Regulation.
Int J Mol Sci. 2022 Nov 9;23(22):13783. doi: 10.3390/ijms232213783.
10
Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures.
Trends Genet. 2022 Oct;38(10):1019-1047. doi: 10.1016/j.tig.2022.05.015. Epub 2022 Jul 7.

本文引用的文献

1
Non-coding genetic variation in cancer.
Curr Opin Syst Biol. 2017 Feb;1:9-15. doi: 10.1016/j.coisb.2016.12.017. Epub 2017 Mar 4.
2
Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling.
Nat Methods. 2018 Jun;15(6):437-439. doi: 10.1038/s41592-018-0007-1. Epub 2018 May 7.
3
Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments.
Nat Protoc. 2018 May;13(5):946-986. doi: 10.1038/nprot.2018.005. Epub 2018 Apr 12.
4
Toward an integrated map of genetic interactions in cancer cells.
Mol Syst Biol. 2018 Feb 21;14(2):e7656. doi: 10.15252/msb.20177656.
6
Enhanced proofreading governs CRISPR-Cas9 targeting accuracy.
Nature. 2017 Oct 19;550(7676):407-410. doi: 10.1038/nature24268. Epub 2017 Sep 20.
7
GUIDES: sgRNA design for loss-of-function screens.
Nat Methods. 2017 Aug 31;14(9):831-832. doi: 10.1038/nmeth.4423.
8
An Upper Limit on the Functional Fraction of the Human Genome.
Genome Biol Evol. 2017 Jul 1;9(7):1880-1885. doi: 10.1093/gbe/evx121.
9
Discovery of stimulation-responsive immune enhancers with CRISPR activation.
Nature. 2017 Sep 7;549(7670):111-115. doi: 10.1038/nature23875. Epub 2017 Aug 30.
10
In Situ Capture of Chromatin Interactions by Biotinylated dCas9.
Cell. 2017 Aug 24;170(5):1028-1043.e19. doi: 10.1016/j.cell.2017.08.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验