Suppr超能文献

使用具有最优阈值的凸活动轮廓模型进行交互式乳腺肿块分割

Interactive breast mass segmentation using a convex active contour model with optimal threshold values.

作者信息

Acho Sussan Nkwenti, Rae William Ian Duncombe

机构信息

Department of Medical Physics, University of the Free State, Bloemfontein 9300, South Africa.

出版信息

Phys Med. 2016 Oct;32(10):1352-1359. doi: 10.1016/j.ejmp.2016.05.054. Epub 2016 Jun 2.

Abstract

INTRODUCTION

A convex active contour model requires a predefined threshold value to determine the global solution for the best contour to use when doing mass segmentation. Fixed thresholds or manual tuning of threshold values for optimum mass boundary delineation are impracticable. A proposed method is presented to determine an optimized mass-specific threshold value for the convex active contour derived from the probability matrix of the mass with the particle swarm optimization method. We compared our results with the Chan-Vese segmentation and a published global segmentation model on masses detected on direct digital mammograms.

METHODS AND MATERIALS

The regional term of the convex active contour model maximizes the posterior partitioning probability for binary segmentation. Suppose the probability matrix is binary thresholded using the particle swarm optimization to obtain a value T, we define the optimal threshold value for the global minimizer of the convex active contour as the mean intensity of all pixels whose probabilities are greater than T.

RESULTS

The mean Jaccard similarity indices were 0.89±0.07 for the proposed/Chan-Vese method and 0.88±0.06 for the proposed/published segmentation model. The mean Euclidean distance between Fourier descriptors of the segmented areas was 0.05±0.03 for the proposed/Chan-Vese method and 0.06±0.04 for the proposed/published segmentation model.

CONCLUSIONS

This efficient method avoids problems of initial level set contour placement and contour re-initialization. Moreover, optimum segmentation results are realized for all masses improving on the fixed threshold value of 0.5 proposed elsewhere.

摘要

引言

凸活动轮廓模型需要一个预定义的阈值来确定在进行肿块分割时用于最佳轮廓的全局解。使用固定阈值或手动调整阈值以实现最佳肿块边界描绘是不切实际的。本文提出了一种方法,利用粒子群优化算法从肿块的概率矩阵中确定凸活动轮廓的优化肿块特异性阈值。我们将我们的结果与Chan-Vese分割法以及在直接数字化乳腺钼靶片上检测到的肿块的已发表全局分割模型进行了比较。

方法与材料

凸活动轮廓模型的区域项使二元分割的后验划分概率最大化。假设使用粒子群优化算法对概率矩阵进行二元阈值处理以获得值T,我们将凸活动轮廓全局极小值的最优阈值定义为概率大于T的所有像素的平均强度。

结果

所提出的方法与Chan-Vese方法的平均杰卡德相似指数为0.89±0.07,所提出的方法与已发表分割模型的平均杰卡德相似指数为0.88±0.06。所提出的方法与Chan-Vese方法分割区域的傅里叶描述符之间的平均欧几里得距离为0.05±0.03,所提出的方法与已发表分割模型分割区域的傅里叶描述符之间的平均欧几里得距离为0.06±0.04。

结论

这种有效方法避免了初始水平集轮廓放置和轮廓重新初始化的问题。此外,对于所有肿块都实现了最佳分割结果,优于其他地方提出的固定阈值0.5。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验