Suppr超能文献

通过原位适应性细胞转化实现胰腺胰岛素生成细胞的再生。

Regeneration of pancreatic insulin-producing cells by in situ adaptive cell conversion.

作者信息

Chera Simona, Herrera Pedro L

机构信息

Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway.

Department of Genetic Medicine & Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, 1 rue Michel-Servet, 1211 Geneva-4, Switzerland.

出版信息

Curr Opin Genet Dev. 2016 Oct;40:1-10. doi: 10.1016/j.gde.2016.05.010. Epub 2016 Jun 3.

Abstract

The impaired ability to produce or respond to insulin, a hormone synthetized by the pancreatic β-cells, leads to diabetes. There is an excruciating need of finding new approaches to protect or restore these cells once they are lost. Replacement and ex vivo directed reprogramming methods have an undeniable therapeutic potential, yet they exhibit crucial flaws. The in vivo conversion of adult cells to functional insulin-producing cells is a promising alternative for regenerative treatments in diabetes. The stunning natural transdifferentiation potential of the adult endocrine pancreas was recently uncovered. Modulating molecular targets involved in β-cell fate maintenance or in general differentiation mechanisms can further potentiate this intrinsic cell plasticity, which leads to insulin production reconstitution.

摘要

胰腺β细胞合成的激素胰岛素产生或响应能力受损会导致糖尿病。一旦这些细胞丢失,迫切需要找到新的方法来保护或恢复它们。替代和体外定向重编程方法具有不可否认的治疗潜力,但它们存在关键缺陷。将成体细胞体内转化为功能性胰岛素产生细胞是糖尿病再生治疗的一种有前景的替代方法。最近发现了成体内分泌胰腺惊人的自然转分化潜力。调节参与β细胞命运维持或一般分化机制的分子靶点可以进一步增强这种内在的细胞可塑性,从而导致胰岛素产生的重建。

相似文献

1
Regeneration of pancreatic insulin-producing cells by in situ adaptive cell conversion.
Curr Opin Genet Dev. 2016 Oct;40:1-10. doi: 10.1016/j.gde.2016.05.010. Epub 2016 Jun 3.
2
Stress-induced adaptive islet cell identity changes.
Diabetes Obes Metab. 2016 Sep;18 Suppl 1(Suppl 1):87-96. doi: 10.1111/dom.12726.
3
PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration.
Stem Cell Res Ther. 2017 Nov 2;8(1):240. doi: 10.1186/s13287-017-0694-z.
4
Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas.
Mol Metab. 2017 Jul 20;6(9):974-990. doi: 10.1016/j.molmet.2017.06.021. eCollection 2017 Sep.
5
Regenerating pancreatic beta-cells: plasticity of adult pancreatic cells and the feasibility of in-vivo neogenesis.
Curr Opin Organ Transplant. 2010 Feb;15(1):79-85. doi: 10.1097/MOT.0b013e3283344932.
6
Chemical strategies for pancreatic β cell differentiation, reprogramming, and regeneration.
Acta Biochim Biophys Sin (Shanghai). 2017 Apr 1;49(4):289-301. doi: 10.1093/abbs/gmx008.
7
Cellular plasticity of the pancreas.
Biol Chem. 2009 Oct;390(10):995-1001. doi: 10.1515/BC.2009.117.
8
Pancreatic β Cell Regeneration as a Possible Therapy for Diabetes.
Cell Metab. 2018 Jan 9;27(1):57-67. doi: 10.1016/j.cmet.2017.08.007. Epub 2017 Sep 7.
9
Chronology of endocrine differentiation and beta-cell neogenesis.
Endocr J. 2016;63(3):205-11. doi: 10.1507/endocrj.EJ15-0601. Epub 2015 Nov 27.
10
The use of stem cells for pancreatic regeneration in diabetes mellitus.
Nat Rev Endocrinol. 2013 Oct;9(10):598-606. doi: 10.1038/nrendo.2013.145. Epub 2013 Jul 23.

引用本文的文献

1
Regulated and adaptive in vivo insulin secretion from islets only containing β-cells.
Nat Metab. 2024 Sep;6(9):1791-1806. doi: 10.1038/s42255-024-01114-8. Epub 2024 Aug 21.
4
Specific reprogramming of alpha cells to insulin-producing cells by short glucagon promoter-driven Pdx1 and MafA.
Mol Ther Methods Clin Dev. 2023 Feb 11;28:355-365. doi: 10.1016/j.omtm.2023.02.003. eCollection 2023 Mar 9.
5
Editorial: Beta-Cell Fate: From Gene Circuits to Disease Mechanisms.
Front Genet. 2022 Feb 25;13:822440. doi: 10.3389/fgene.2022.822440. eCollection 2022.
6
Convergent Functional Genomics approach to prioritize molecular targets of risk in early life stress-related psychiatric disorders.
Brain Behav Immun Health. 2020 Aug 2;8:100120. doi: 10.1016/j.bbih.2020.100120. eCollection 2020 Oct.
9
Regenerative medicine of pancreatic islets.
World J Gastroenterol. 2020 Jun 14;26(22):2948-2966. doi: 10.3748/wjg.v26.i22.2948.
10
Environment Swiftly Restricts Human Pancreatic Progenitors Toward Mono-Hormonal Identity via a HNF1A/HNF4A Mechanism.
Front Cell Dev Biol. 2020 Feb 25;8:109. doi: 10.3389/fcell.2020.00109. eCollection 2020.

本文引用的文献

1
mTORC1 pathway mediates beta cell compensatory proliferation in 60 % partial-pancreatectomy mice.
Endocrine. 2016 Jul;53(1):117-28. doi: 10.1007/s12020-016-0861-5. Epub 2016 Jan 27.
3
The Role of Cell Plasticity in Tissue Repair: Adaptive Cellular Reprogramming.
Dev Cell. 2015 Sep 28;34(6):613-20. doi: 10.1016/j.devcel.2015.09.005.
5
The use of lineage tracing to study kidney injury and regeneration.
Nat Rev Nephrol. 2015 Jul;11(7):420-31. doi: 10.1038/nrneph.2015.67. Epub 2015 May 12.
6
Schwann Cells: Development and Role in Nerve Repair.
Cold Spring Harb Perspect Biol. 2015 May 8;7(7):a020487. doi: 10.1101/cshperspect.a020487.
7
Sensory hair cell death and regeneration in fishes.
Front Cell Neurosci. 2015 Apr 21;9:131. doi: 10.3389/fncel.2015.00131. eCollection 2015.
8
Loss of β-Cell Identity Occurs in Type 2 Diabetes and Is Associated With Islet Amyloid Deposits.
Diabetes. 2015 Aug;64(8):2928-38. doi: 10.2337/db14-1752. Epub 2015 Apr 27.
9
Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro.
EMBO J. 2015 Jul 2;34(13):1759-72. doi: 10.15252/embj.201591058. Epub 2015 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验