Department of Nanophysics, ‡Department of Nanochemistry, and §Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) , Via Morego 30, 16163 Genova, Italy.
Langmuir. 2016 Jun 28;32(25):6319-27. doi: 10.1021/acs.langmuir.6b01352. Epub 2016 Jun 20.
The control of neuron-substrate adhesion has been always a challenge for fabricating neuron-based cell chips and in particular for multielectrode array (MEA) devices, which warrants the investigation of the electrophysiological activity of neuronal networks. The recent introduction of high-density chips based on the complementary metal oxide semiconductor (CMOS) technology, integrating thousands of electrodes, improved the possibility to sense large networks and raised the challenge to develop newly adapted functionalization techniques to further increase neuron electrode localization to avoid the positioning of cells out of the recording area. Here, we present a simple and straightforward chemical functionalization method that leads to the precise and exclusive positioning of the neural cell bodies onto modified electrodes and inhibits, at the same time, cellular adhesion in the surrounding insulator areas. Different from other approaches, this technique does not require any adhesion molecule as well as complex patterning technique such as μ-contact printing. The functionalization was first optimized on gold (Au) and silicon nitride (Si3N4)-patterned surfaces. The procedure consisted of the introduction of a passivating layer of hydrophobic silane molecules (propyltriethoxysilane [PTES]) followed by a treatment of the Au surface using 11-amino-1-undecanethiol hydrochloride (AT). On model substrates, well-ordered neural networks and an optimal coupling between a single neuron and single micrometric functionalized Au surface were achieved. In addition, we presented the preliminary results of this functionalization method directly applied on a CMOS-MEA: the electrical spontaneous spiking and bursting activities of the network recorded for up to 4 weeks demonstrate an excellent and stable neural adhesion and functional behavior comparable with what expected using a standard adhesion factor, such as polylysine or laminin, thus demonstrating that this procedure can be considered a good starting point to develop alternatives to the traditional chip coatings to provide selective and specific neuron-substrate adhesion.
神经元-基底粘附的控制一直是制造基于神经元的细胞芯片的挑战,特别是对于多电极阵列 (MEA) 设备,这需要研究神经元网络的电生理活性。最近引入的基于互补金属氧化物半导体 (CMOS) 技术的高密度芯片,集成了数千个电极,提高了感知大型网络的可能性,并提出了开发新的适应性功能化技术的挑战,以进一步增加神经元电极定位,避免细胞定位在记录区域之外。在这里,我们提出了一种简单直接的化学功能化方法,可将神经细胞精确地定位在修饰电极上,并同时抑制周围绝缘体区域的细胞粘附。与其他方法不同,该技术不需要任何粘附分子,也不需要复杂的图案化技术,如微接触印刷。该功能化首先在金 (Au) 和氮化硅 (Si3N4) 图案化表面上进行优化。该过程包括引入疏水性硅烷分子(丙基三乙氧基硅烷 [PTES])的钝化层,然后用 11-氨基-1-十一硫醇盐酸盐 (AT) 处理 Au 表面。在模型基底上,实现了有序的神经网络和单个神经元与单个微米功能化 Au 表面之间的最佳耦合。此外,我们还展示了该功能化方法直接应用于 CMOS-MEA 的初步结果:记录了长达 4 周的网络的自发电脉冲和爆发活动,证明了良好的、稳定的神经粘附和功能行为,与使用标准粘附因子(如多聚赖氨酸或层粘连蛋白)预期的结果相当,这表明该方法可以被认为是开发传统芯片涂层替代品的良好起点,以提供选择性和特异性的神经元-基底粘附。