Lee Ah-Hyoung, Lee Jihun, Laiwalla Farah, Leung Vincent, Huang Jiannan, Nurmikko Arto, Song Yoon-Kyu
Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
School of Engineering, Brown University, Providence, RI 02912, USA.
Micromachines (Basel). 2020 Oct 5;11(10):925. doi: 10.3390/mi11100925.
Implantable active electronic microchips are being developed as multinode in-body sensors and actuators. There is a need to develop high throughput microfabrication techniques applicable to complementary metal-oxide-semiconductor (CMOS)-based silicon electronics in order to process bare dies from a foundry to physiologically compatible implant ensembles. Post-processing of a miniature CMOS chip by usual methods is challenging as the typically sub-mm size small dies are hard to handle and not readily compatible with the standard microfabrication, e.g., photolithography. Here, we present a soft material-based, low chemical and mechanical stress, scalable microchip post-CMOS processing method that enables photolithography and electron-beam deposition on hundreds of micrometers scale dies. The technique builds on the use of a polydimethylsiloxane (PDMS) carrier substrate, in which the CMOS chips were embedded and precisely aligned, thereby enabling batch post-processing without complication from additional micromachining or chip treatments. We have demonstrated our technique with 650 μm × 650 μm and 280 μm × 280 μm chips, designed for electrophysiological neural recording and microstimulation implants by monolithic integration of patterned gold and PEDOT:PSS electrodes on the chips and assessed their electrical properties. The functionality of the post-processed chips was verified in saline, and ex vivo experiments using wireless power and data link, to demonstrate the recording and stimulation performance of the microscale electrode interfaces.
可植入有源电子微芯片正被开发用作多节点体内传感器和致动器。需要开发适用于基于互补金属氧化物半导体(CMOS)的硅电子产品的高通量微加工技术,以便将来自代工厂的裸芯片加工成生理兼容的植入组件。用常规方法对微型CMOS芯片进行后处理具有挑战性,因为典型的亚毫米尺寸小芯片难以处理,并且不易与标准微加工(例如光刻)兼容。在这里,我们提出了一种基于软材料、低化学和机械应力、可扩展的微芯片CMOS后处理方法,该方法能够在数百微米尺度的芯片上进行光刻和电子束沉积。该技术基于使用聚二甲基硅氧烷(PDMS)载体基板,CMOS芯片被嵌入其中并精确对齐,从而实现批量后处理,而不会因额外的微加工或芯片处理而变得复杂。我们已经用650μm×650μm和280μm×280μm的芯片展示了我们的技术,这些芯片通过在芯片上单片集成图案化金电极和PEDOT:PSS电极,设计用于电生理神经记录和微刺激植入,并评估了它们的电学性能。在盐水中以及使用无线电源和数据链路的离体实验中验证了后处理芯片的功能,以证明微尺度电极界面的记录和刺激性能。