Feng Jie, Li Yifei, Wang Jinguang, Li Dazhang, Li Fang, Yan Wenchao, Wang Weimin, Chen Liming
Beijing National Research Center of Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, China.
University of Chinese Academy of Sciences, Beijing, China.
Sci Rep. 2019 Feb 21;9(1):2531. doi: 10.1038/s41598-019-38777-3.
Ultra-fast synchrotron radiation emission can arise from the transverse betatron motion of an electron in a laser plasma wakefield, and the radiation spectral peak is limited to tens of keV. Here, we present a new method for achieving high-energy radiation via accelerated electrons wiggling in an additional laser field whose intensity is one order of magnitude higher than that for the self-generated transverse field of the bubble, resulting in an equivalent wiggler strength parameter K increase of approximately twenty times. By calculating synchrotron radiation, we acquired a peak brightness for the case of the laser wiggler field of 1.2 × 10 ph/s/mrad/mm/0.1%BW at 1 MeV. Such a high brilliance and ultra-fast gamma-ray source could be applied to time-resolved probing of dense materials and the production of medical radioisotopes.
超快同步辐射发射可源于电子在激光等离子体尾波场中的横向电子回旋运动,且辐射光谱峰值限制在几十keV。在此,我们提出一种新方法,通过使加速电子在强度比气泡自生横向场高一个数量级的附加激光场中摆动来实现高能辐射,这使得等效摆动器强度参数K增加约20倍。通过计算同步辐射,我们得到在1MeV时激光摆动器场情况下的峰值亮度为1.2×10 ph/s/mrad/mm/0.1%BW。这样高亮度且超快的伽马射线源可应用于致密材料的时间分辨探测以及医用放射性同位素的生产。