Suppr超能文献

用于多源分子数据探索的R.JIVE

R.JIVE for exploration of multi-source molecular data.

作者信息

O'Connell Michael J, Lock Eric F

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Bioinformatics. 2016 Sep 15;32(18):2877-9. doi: 10.1093/bioinformatics/btw324. Epub 2016 Jun 6.

Abstract

UNLABELLED

: The integrative analysis of multiple high-throughput data sources that are available for a common sample set is an increasingly common goal in biomedical research. Joint and individual variation explained (JIVE) is a tool for exploratory dimension reduction that decomposes a multi-source dataset into three terms: a low-rank approximation capturing joint variation across sources, low-rank approximations for structured variation individual to each source and residual noise. JIVE has been used to explore multi-source data for a variety of application areas but its accessibility was previously limited. We introduce R.JIVE, an intuitive R package to perform JIVE and visualize the results. We discuss several improvements and extensions of the JIVE methodology that are included. We illustrate the package with an application to multi-source breast tumor data from The Cancer Genome Atlas.

AVAILABILITY AND IMPLEMENTATION

R.JIVE is available via the Comprehensive R Archive Network (CRAN) under the GPLv3 license: https://cran.r-project.org/web/packages/r.jive/

CONTACT

elock@umn.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

未标注

对可用于同一样本集的多个高通量数据源进行综合分析是生物医学研究中日益常见的目标。联合和个体变异解释(JIVE)是一种用于探索性降维的工具,它将多源数据集分解为三个部分:一个捕获各源间联合变异的低秩近似、每个源特有的结构化变异的低秩近似以及残余噪声。JIVE已被用于探索多个应用领域的多源数据,但其易用性此前受到限制。我们引入了R.JIVE,一个用于执行JIVE并可视化结果的直观R包。我们讨论了所包含的JIVE方法的若干改进和扩展。我们通过应用于来自癌症基因组图谱的多源乳腺肿瘤数据来说明该包。

可用性和实现方式

R.JIVE可通过综合R存档网络(CRAN)以GPLv3许可获取:https://cran.r-project.org/web/packages/r.jive/

联系方式

elock@umn.edu

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
R.JIVE for exploration of multi-source molecular data.用于多源分子数据探索的R.JIVE
Bioinformatics. 2016 Sep 15;32(18):2877-9. doi: 10.1093/bioinformatics/btw324. Epub 2016 Jun 6.
5
JIVE integration of imaging and behavioral data.JIVE 整合成像和行为数据。
Neuroimage. 2017 May 15;152:38-49. doi: 10.1016/j.neuroimage.2017.02.072. Epub 2017 Feb 27.
6
GHap: an R package for genome-wide haplotyping.GHap:一个用于全基因组单倍型分型的R软件包。
Bioinformatics. 2016 Sep 15;32(18):2861-2. doi: 10.1093/bioinformatics/btw356. Epub 2016 Jun 9.
8
APCluster: an R package for affinity propagation clustering.APCluster:一个用于亲和传播聚类的 R 包。
Bioinformatics. 2011 Sep 1;27(17):2463-4. doi: 10.1093/bioinformatics/btr406. Epub 2011 Jul 6.
10
Prediction With Dimension Reduction of Multiple Molecular Data Sources for Patient Survival.利用多分子数据源降维预测患者生存率
Cancer Inform. 2017 Jul 11;16:1176935117718517. doi: 10.1177/1176935117718517. eCollection 2017.

引用本文的文献

3
Empirical Bayes Linked Matrix Decomposition.经验贝叶斯链接矩阵分解
Mach Learn. 2024 Oct;113(10):7451-7477. doi: 10.1007/s10994-024-06599-8. Epub 2024 Aug 7.
5
Methods for multi-omic data integration in cancer research.癌症研究中的多组学数据整合方法。
Front Genet. 2024 Sep 19;15:1425456. doi: 10.3389/fgene.2024.1425456. eCollection 2024.

本文引用的文献

2
Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction.多区块数据的组成分分析:共同和个体特征提取。
IEEE Trans Neural Netw Learn Syst. 2016 Nov;27(11):2426-2439. doi: 10.1109/TNNLS.2015.2487364. Epub 2015 Oct 28.
5
Bayesian joint analysis of heterogeneous genomics data.贝叶斯异质基因组学数据联合分析。
Bioinformatics. 2014 May 15;30(10):1370-6. doi: 10.1093/bioinformatics/btu064. Epub 2014 Jan 30.
7
Bayesian consensus clustering.贝叶斯共识聚类。
Bioinformatics. 2013 Oct 15;29(20):2610-6. doi: 10.1093/bioinformatics/btt425. Epub 2013 Aug 28.
9
Comprehensive molecular portraits of human breast tumours.人类乳腺肿瘤的全面分子特征图谱。
Nature. 2012 Oct 4;490(7418):61-70. doi: 10.1038/nature11412. Epub 2012 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验