Suppr超能文献

用于整合具有多个结果的多个组学概况的关联矩阵的自助评估(BEAM)

Bootstrap Evaluation of Association Matrices (BEAM) for Integrating Multiple Omics Profiles with Multiple Outcomes.

作者信息

Seffernick Anna Eames, Cao Xueyuan, Cheng Cheng, Yang Wenjian, Autry Robert J, Yang Jun J, Pui Ching-Hon, Teachey David T, Lamba Jatinder K, Mullighan Charles G, Pounds Stanley B

机构信息

Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA.

Department of Health Promotion and Disease Prevention, University of Tennessee Health Science Center, Memphis, TN, USA.

出版信息

bioRxiv. 2024 Aug 3:2024.07.31.605805. doi: 10.1101/2024.07.31.605805.

Abstract

MOTIVATION

Large datasets containing multiple clinical and omics measurements for each subject motivate the development of new statistical methods to integrate these data to advance scientific discovery.

MODEL

We propose bootstrap evaluation of association matrices (BEAM), which integrates multiple omics profiles with multiple clinical endpoints. BEAM associates a set omic features with clinical endpoints via regression models and then uses bootstrap resampling to determine statistical significance of the set. Unlike existing methods, BEAM uniquely accommodates an arbitrary number of omic profiles and endpoints.

RESULTS

In simulations, BEAM performed similarly to the theoretically best simple test and outperformed other integrated analysis methods. In an example pediatric leukemia application, BEAM identified several genes with biological relevance established by a CRISPR assay that had been missed by univariate screens and other integrated analysis methods. Thus, BEAM is a powerful, flexible, and robust tool to identify genes for further laboratory and/or clinical research evaluation.

AVAILABILITY

Source code, documentation, and a vignette for BEAM are available on GitHub at: https://github.com/annaSeffernick/BEAMR. The R package is available from CRAN at: https://cran.r-project.org/package=BEAMR.

CONTACT

Stanley.Pounds@stjude.org.

SUPPLEMENTARY INFORMATION

Supplementary data are available at the journal's website.

摘要

动机

包含每个受试者多种临床和组学测量数据的大型数据集推动了新统计方法的发展,以整合这些数据来促进科学发现。

模型

我们提出了关联矩阵的自举评估法(BEAM),它将多种组学特征与多个临床终点相结合。BEAM通过回归模型将一组组学特征与临床终点相关联,然后使用自举重采样来确定该组的统计显著性。与现有方法不同,BEAM独特地适用于任意数量的组学特征和终点。

结果

在模拟中,BEAM的表现与理论上最佳的简单检验相似,且优于其他综合分析方法。在一个儿科白血病应用实例中,BEAM识别出了几个具有生物学相关性的基因,这些基因通过CRISPR检测得到证实,而单变量筛选和其他综合分析方法都未能发现。因此,BEAM是一种强大、灵活且稳健的工具,可用于识别基因,以供进一步的实验室和/或临床研究评估。

可用性

BEAM的源代码、文档和一个示例可在GitHub上获取:https://github.com/annaSeffernick/BEAMR。R包可从CRAN获取:https://cran.r-project.org/package=BEAMR。

联系方式

Stanley.Pounds@stjude.org

补充信息

补充数据可在期刊网站上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd09/11312528/877b15e6dc91/nihpp-2024.07.31.605805v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验