Suppr超能文献

用于多数据类型综合分析的联合与个体变异解释(JIVE)

JOINT AND INDIVIDUAL VARIATION EXPLAINED (JIVE) FOR INTEGRATED ANALYSIS OF MULTIPLE DATA TYPES.

作者信息

Lock Eric F, Hoadley Katherine A, Marron J S, Nobel Andrew B

机构信息

Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.

出版信息

Ann Appl Stat. 2013 Mar 1;7(1):523-542. doi: 10.1214/12-AOAS597.

Abstract

Research in several fields now requires the analysis of datasets in which multiple high-dimensional types of data are available for a common set of objects. In particular, The Cancer Genome Atlas (TCGA) includes data from several diverse genomic technologies on the same cancerous tumor samples. In this paper we introduce Joint and Individual Variation Explained (JIVE), a general decomposition of variation for the integrated analysis of such datasets. The decomposition consists of three terms: a low-rank approximation capturing joint variation across data types, low-rank approximations for structured variation individual to each data type, and residual noise. JIVE quantifies the amount of joint variation between data types, reduces the dimensionality of the data, and provides new directions for the visual exploration of joint and individual structure. The proposed method represents an extension of Principal Component Analysis and has clear advantages over popular two-block methods such as Canonical Correlation Analysis and Partial Least Squares. A JIVE analysis of gene expression and miRNA data on Glioblastoma Multiforme tumor samples reveals gene-miRNA associations and provides better characterization of tumor types.

摘要

现在,多个领域的研究都需要分析数据集,其中针对同一组对象可以获得多种高维数据类型。特别是,癌症基因组图谱(TCGA)包含来自多种不同基因组技术的关于同一癌性肿瘤样本的数据。在本文中,我们引入了联合与个体变异解释(JIVE),这是一种用于对此类数据集进行综合分析的变异通用分解方法。该分解由三个项组成:一个捕获跨数据类型联合变异的低秩近似、针对每种数据类型特有的结构化变异的低秩近似以及残余噪声。JIVE量化了数据类型之间的联合变异量,降低了数据的维度,并为联合和个体结构的可视化探索提供了新方向。所提出的方法是主成分分析的扩展,并且相对于典型相关分析和偏最小二乘等流行的双块方法具有明显优势。对多形性胶质母细胞瘤肿瘤样本的基因表达和miRNA数据进行的JIVE分析揭示了基因 - miRNA关联,并更好地刻画了肿瘤类型。

相似文献

2
R.JIVE for exploration of multi-source molecular data.用于多源分子数据探索的R.JIVE
Bioinformatics. 2016 Sep 15;32(18):2877-9. doi: 10.1093/bioinformatics/btw324. Epub 2016 Jun 6.
3
JIVE integration of imaging and behavioral data.JIVE 整合成像和行为数据。
Neuroimage. 2017 May 15;152:38-49. doi: 10.1016/j.neuroimage.2017.02.072. Epub 2017 Feb 27.
4
Separating common from distinctive variation.区分常见变异与独特变异。
BMC Bioinformatics. 2016 Jun 6;17 Suppl 5(Suppl 5):195. doi: 10.1186/s12859-016-1037-2.
6
Prediction With Dimension Reduction of Multiple Molecular Data Sources for Patient Survival.利用多分子数据源降维预测患者生存率
Cancer Inform. 2017 Jul 11;16:1176935117718517. doi: 10.1177/1176935117718517. eCollection 2017.

引用本文的文献

10
COMMON AND INDIVIDUAL STRUCTURE OF BRAIN NETWORKS.脑网络的共性与个性结构
Ann Appl Stat. 2019 Mar;13(1):85-112. doi: 10.1214/18-AOAS1193. Epub 2019 Apr 10.

本文引用的文献

6
MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS.多级功能主成分分析
Ann Appl Stat. 2009 Mar 1;3(1):458-488. doi: 10.1214/08-AOAS206SUPP.
7
Targeting of mRNAs by multiple miRNAs: the next step.靶向多个 miRNAs 的 mRNAs:下一步。
Oncogene. 2010 Apr 15;29(15):2161-4. doi: 10.1038/onc.2010.59. Epub 2010 Mar 1.
8
Biclustering via sparse singular value decomposition.基于稀疏奇异值分解的双聚类
Biometrics. 2010 Dec;66(4):1087-95. doi: 10.1111/j.1541-0420.2010.01392.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验