Suppr超能文献

基于长白猪和大白猪纯种数据,使用显性模型对杂种性能进行基因组预测。

Genomic prediction of crossbred performance based on purebred Landrace and Yorkshire data using a dominance model.

作者信息

Esfandyari Hadi, Bijma Piter, Henryon Mark, Christensen Ole Fredslund, Sørensen Anders Christian

机构信息

Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, 8830, Denmark.

Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands.

出版信息

Genet Sel Evol. 2016 Jun 8;48(1):40. doi: 10.1186/s12711-016-0220-2.

Abstract

BACKGROUND

In pig breeding, selection is usually carried out in purebred populations, although the final goal is to improve crossbred performance. Genomic selection can be used to select purebred parental lines for crossbred performance. Dominance is the likely genetic basis of heterosis and explicitly including dominance in the genomic selection model may be an advantage when selecting purebreds for crossbred performance. Our objectives were two-fold: (1) to compare the predictive ability of genomic prediction models with additive or additive plus dominance effects, when the validation criterion is crossbred performance; and (2) to compare the use of two pure line reference populations to a single combined reference population.

METHODS

We used data on litter size in the first parity from two pure pig lines (Landrace and Yorkshire) and their reciprocal crosses. Training was performed (1) separately on pure Landrace (2085) and Yorkshire (2145) sows and (2) the two combined pure lines (4230), which were genotyped for 38 k single nucleotide polymorphisms (SNPs). Prediction accuracy was measured as the correlation between genomic estimated breeding values (GEBV) of pure line boars and mean corrected crossbred-progeny performance, divided by the average accuracy of mean-progeny performance. We evaluated a model with additive effects only (MA) and a model with both additive and dominance effects (MAD). Two types of GEBV were computed: GEBV for purebred performance (GEBV) based on either the MA or MAD models, and GEBV for crossbred performance (GEBV-C) based on the MAD. GEBV-C were calculated based on SNP allele frequencies of genotyped animals in the opposite line.

RESULTS

Compared to MA, MAD improved prediction accuracy for both lines. For MAD, GEBV-C improved prediction accuracy compared to GEBV. For Landrace (Yorkshire) boars, prediction accuracies were equal to 0.11 (0.32) for GEBV based on MA, and 0.13 (0.34) and 0.14 (0.36) for GEBV and GEBV-C based on MAD, respectively. Combining animals from both lines into a single reference population yielded higher accuracies than training on each pure line separately. In conclusion, the use of a dominance model increased the accuracy of genomic predictions of crossbred performance based on purebred data.

摘要

背景

在猪的育种中,选择通常在纯种群体中进行,尽管最终目标是提高杂种性能。基因组选择可用于选择具有杂种性能的纯种亲本系。显性效应可能是杂种优势的遗传基础,在为杂种性能选择纯种时,在基因组选择模型中明确纳入显性效应可能具有优势。我们的目标有两个:(1)当验证标准为杂种性能时,比较具有加性效应或加性加显性效应的基因组预测模型的预测能力;(2)比较使用两个纯系参考群体与单个组合参考群体的情况。

方法

我们使用了两个纯猪系(长白猪和大白猪)及其正反交后代头胎产仔数的数据。训练分别在纯种长白猪(2085头)和纯种大白猪(2145头)母猪上进行,以及在两个纯系组合(4230头)上进行,这些猪只针对38k个单核苷酸多态性(SNP)进行了基因分型。预测准确性通过纯种公猪的基因组估计育种值(GEBV)与平均校正杂种后代性能之间的相关性来衡量,并除以平均后代性能的平均准确性。我们评估了仅具有加性效应的模型(MA)和同时具有加性和显性效应的模型(MAD)。计算了两种类型的GEBV:基于MA或MAD模型的纯种性能GEBV,以及基于MAD的杂种性能GEBV(GEBV-C)。GEBV-C是根据另一品系中基因分型动物的SNP等位基因频率计算得出的。

结果

与MA相比,MAD提高了两个品系的预测准确性。对于MAD,GEBV-C与GEBV相比提高了预测准确性。对于长白猪(大白猪)公猪,基于MA的GEBV预测准确性分别为0.11(0.32),基于MAD的GEBV和GEBV-C的预测准确性分别为0.13(0.34)和0.14(0.36)。将两个品系的动物组合成一个单一参考群体产生的准确性高于分别在每个纯种品系上进行训练。总之,使用显性模型提高了基于纯种数据的杂种性能基因组预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b63d/4899891/1847c15b1562/12711_2016_220_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验