Suppr超能文献

相似文献

1
The Response of Acinetobacter baumannii to Zinc Starvation.
Cell Host Microbe. 2016 Jun 8;19(6):826-36. doi: 10.1016/j.chom.2016.05.007.
2
The Acinetobacter baumannii Znu System Overcomes Host-Imposed Nutrient Zinc Limitation.
Infect Immun. 2019 Nov 18;87(12). doi: 10.1128/IAI.00746-19. Print 2019 Dec.
4
Multi-metal Restriction by Calprotectin Impacts De Novo Flavin Biosynthesis in Acinetobacter baumannii.
Cell Chem Biol. 2019 May 16;26(5):745-755.e7. doi: 10.1016/j.chembiol.2019.02.011. Epub 2019 Mar 21.
5
Acinetobacter baumannii response to host-mediated zinc limitation requires the transcriptional regulator Zur.
J Bacteriol. 2014 Jul;196(14):2616-26. doi: 10.1128/JB.01650-14. Epub 2014 May 9.
6
Histidine Utilization Is a Critical Determinant of Pathogenesis.
Infect Immun. 2020 Jun 22;88(7). doi: 10.1128/IAI.00118-20.
9
Coupling of zinc and GTP binding drives G-domain folding in Acinetobacter baumannii ZigA.
Biophys J. 2024 Apr 16;123(8):979-991. doi: 10.1016/j.bpj.2024.03.010. Epub 2024 Mar 8.
10
The Role of Zinc Efflux during Infection.
ACS Infect Dis. 2020 Jan 10;6(1):150-158. doi: 10.1021/acsinfecdis.9b00351. Epub 2019 Nov 8.

引用本文的文献

1
Amino acid competition shapes Acinetobacter baumannii gut carriage.
Cell Host Microbe. 2025 Aug 13;33(8):1396-1411.e9. doi: 10.1016/j.chom.2025.07.003. Epub 2025 Aug 4.
2
Zinc Alleviates Gut Barrier Dysfunction by Promoting the Methylation of AKT.
Adv Sci (Weinh). 2025 Sep;12(33):e08280. doi: 10.1002/advs.202508280. Epub 2025 Jul 11.
3
Bacteria Under Metal Stress-Molecular Mechanisms of Metal Tolerance.
Int J Mol Sci. 2025 Jun 14;26(12):5716. doi: 10.3390/ijms26125716.
4
The zinc metalloprotein MigC impacts cell wall biogenesis through interactions with an essential Mur ligase in Acinetobacter baumannii.
PLoS Pathog. 2025 Jun 16;21(6):e1013209. doi: 10.1371/journal.ppat.1013209. eCollection 2025 Jun.
5
Signaling in : Quorum sensing and nucleotide second messengers.
Comput Struct Biotechnol J. 2025 May 22;27:2168-2175. doi: 10.1016/j.csbj.2025.05.032. eCollection 2025.
6
Chalkophore-mediated respiratory oxidase flexibility controls virulence.
Elife. 2025 Jun 5;14:RP105794. doi: 10.7554/eLife.105794.
7
10
Type I-E* CRISPR-Cas of upregulates bacterial virulence by targeting endogenous histidine utilization system.
mSphere. 2025 Jun 25;10(6):e0021525. doi: 10.1128/msphere.00215-25. Epub 2025 May 19.

本文引用的文献

2
Bacillithiol is a major buffer of the labile zinc pool in Bacillus subtilis.
Mol Microbiol. 2014 Nov;94(4):756-70. doi: 10.1111/mmi.12794. Epub 2014 Oct 7.
3
Acinetobacter baumannii response to host-mediated zinc limitation requires the transcriptional regulator Zur.
J Bacteriol. 2014 Jul;196(14):2616-26. doi: 10.1128/JB.01650-14. Epub 2014 May 9.
6
Allosteric inhibition of a zinc-sensing transcriptional repressor: insights into the arsenic repressor (ArsR) family.
J Mol Biol. 2013 Apr 12;425(7):1143-57. doi: 10.1016/j.jmb.2013.01.018. Epub 2013 Jan 23.
8
Regulation of the histidine utilization (hut) system in bacteria.
Microbiol Mol Biol Rev. 2012 Sep;76(3):565-84. doi: 10.1128/MMBR.00014-12.
9
Nutritional immunity: transition metals at the pathogen-host interface.
Nat Rev Microbiol. 2012 Jul 16;10(8):525-37. doi: 10.1038/nrmicro2836.
10
YeiR: a metal-binding GTPase from Escherichia coli involved in metal homeostasis.
Metallomics. 2012 May;4(5):488-97. doi: 10.1039/c2mt20012k. Epub 2012 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验