Suppr超能文献

一种用于表征气溶胶递送和成分的电子烟雾化器。

An Electronic Cigarette Vaping Machine for the Characterization of Aerosol Delivery and Composition.

作者信息

Havel Christopher M, Benowitz Neal L, Jacob Peyton, St Helen Gideon

机构信息

Division of Clinical Pharmacology and Experimental Therapeutics, Department of Medicine, University of California, San Francisco, CA.

Center for Tobacco Control Research and Education, University of California, San Francisco, CA.

出版信息

Nicotine Tob Res. 2017 Oct 1;19(10):1224-1231. doi: 10.1093/ntr/ntw147.

Abstract

INTRODUCTION

Characterization of aerosols generated by electronic cigarettes (e-cigarettes) is one method used to evaluate the safety of e-cigarettes. While some researchers have modified smoking machines for e-cigarette aerosol generation, these machines are either not readily available, not automated for e-cigarette testing or have not been adequately described. The objective of this study was to build an e-cigarette vaping machine that can be used to test, under standard conditions, e-liquid aerosolization and nicotine and toxicant delivery.

METHODS

The vaping machine was assembled from commercially available parts, including a puff controller, vacuum pump, power supply, switch to control current flow to the atomizer, three-way value to direct air flow to the atomizer, and three gas dispersion tubes for aerosol trapping. To validate and illustrate its use, the variation in aerosol generation was assessed within and between KangerTech Mini ProTank 3 clearomizers, and the effect of voltage on aerosolization and toxic aldehyde generation were assessed.

RESULTS

When using one ProTank 3 clearomizer and different e-liquid flavors, the coefficient of variation (CV) of aerosol generated ranged between 11.5% and 19.3%. The variation in aerosol generated between ProTank 3 clearomizers with different e-liquid flavors and voltage settings ranged between 8.3% and 16.3% CV. Aerosol generation increased linearly at 3-6V across e-liquids and clearomizer brands. Acetaldehyde, acrolein, and formaldehyde generation increased markedly at voltages at or above 5V.

CONCLUSION

The vaping machine that we describe reproducibly aerosolizes e-liquids from e-cigarette atomizers under controlled conditions and is useful for testing of nicotine and toxicant delivery.

IMPLICATIONS

This study describes an electronic cigarette vaping machine that was assembled from commercially available parts. The vaping machine can be replicated by researchers and used under standard conditions to generate e-cigarette aerosols and characterize nicotine and toxicant delivery.

摘要

引言

对电子烟产生的气溶胶进行表征是评估电子烟安全性的一种方法。虽然一些研究人员对吸烟机进行了改装以用于产生电子烟气溶胶,但这些机器要么不易获得,要么未针对电子烟测试实现自动化,要么没有得到充分描述。本研究的目的是构建一种电子烟雾化机,可用于在标准条件下测试电子烟液的雾化以及尼古丁和有毒物质的输送。

方法

该雾化机由市售部件组装而成,包括抽吸控制器、真空泵、电源、控制流向雾化器电流的开关、引导气流至雾化器的三通阀以及用于捕集气溶胶的三根气体分散管。为了验证并说明其用途,评估了康尔 Mini ProTank 3 透明雾化器内部以及不同雾化器之间气溶胶产生的变化情况,并评估了电压对雾化和气态有毒醛类生成的影响。

结果

使用一个 ProTank 3 透明雾化器和不同口味的电子烟液时,产生的气溶胶的变异系数(CV)在 11.5%至 19.3%之间。不同口味电子烟液和电压设置的 ProTank 3 透明雾化器之间产生的气溶胶的变异系数在 8.3%至 16.3%之间。在 3 - 6V 范围内,电子烟液和气态雾化器品牌的气溶胶产生呈线性增加。在 5V 及以上电压时,乙醛、丙烯醛和甲醛的生成显著增加。

结论

我们描述的雾化机能在受控条件下可重复地使电子烟雾化器中的电子烟液雾化,并且对于测试尼古丁和有毒物质的输送很有用。

启示

本研究描述了一种由市售部件组装而成的电子烟雾化机。研究人员可以复制该雾化机,并在标准条件下使用它来产生电子烟气溶胶,并对尼古丁和有毒物质的输送进行表征。

相似文献

1
An Electronic Cigarette Vaping Machine for the Characterization of Aerosol Delivery and Composition.
Nicotine Tob Res. 2017 Oct 1;19(10):1224-1231. doi: 10.1093/ntr/ntw147.
4
Electrical features, liquid composition and toxicant emissions from 'pod-mod'-like disposable electronic cigarettes.
Tob Control. 2022 Sep;31(5):667-670. doi: 10.1136/tobaccocontrol-2020-056362. Epub 2021 May 12.
5
Effects of e-liquid flavor, nicotine content, and puff duration on metal emissions from electronic cigarettes.
Environ Res. 2022 Mar;204(Pt C):112270. doi: 10.1016/j.envres.2021.112270. Epub 2021 Oct 27.
6
Fabrication and Validation of an Economical, Programmable, Dual-Channel, Electronic Cigarette Aerosol Generator.
Int J Environ Res Public Health. 2021 Dec 14;18(24):13190. doi: 10.3390/ijerph182413190.
7
Aldehyde levels in e-cigarette aerosol: Findings from a replication study and from use of a new-generation device.
Food Chem Toxicol. 2018 Jan;111:64-70. doi: 10.1016/j.fct.2017.11.002. Epub 2017 Nov 3.
8
Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis.
Nicotine Tob Res. 2016 Sep;18(9):1895-1902. doi: 10.1093/ntr/ntw128. Epub 2016 May 4.

引用本文的文献

2
Effects of Aftermarket Electronic Cigarette Pods on Device Power Output and Nicotine, Carbonyl, and ROS Emissions.
Chem Res Toxicol. 2023 Dec 18;36(12):1930-1937. doi: 10.1021/acs.chemrestox.3c00213. Epub 2023 Nov 30.
3
Occurrence of metals in e-cigarette liquids: Influence of coils on metal leaching and exposure assessment.
Heliyon. 2023 Mar 11;9(3):e14495. doi: 10.1016/j.heliyon.2023.e14495. eCollection 2023 Mar.
5
Evaluation of secondary electronic cigarette inhalation on lipid metabolism in C57BL/6J mice using indirect calorimetry.
Metabol Open. 2021 Nov 18;12:100150. doi: 10.1016/j.metop.2021.100150. eCollection 2021 Dec.
6
An Automated Aerosol Collection and Extraction System to Characterize Electronic Cigarette Aerosols.
Front Chem. 2021 Nov 4;9:764730. doi: 10.3389/fchem.2021.764730. eCollection 2021.
9
Influence of battery power setting on carbonyl emissions from electronic cigarettes.
Tob Induc Dis. 2020 Sep 14;18:77. doi: 10.18332/tid/126406. eCollection 2020.
10
Nicotine forms: why and how do they matter in nicotine delivery from electronic cigarettes?
Expert Opin Drug Deliv. 2020 Dec;17(12):1727-1736. doi: 10.1080/17425247.2020.1814736. Epub 2020 Sep 17.

本文引用的文献

1
Nicotine delivery, retention and pharmacokinetics from various electronic cigarettes.
Addiction. 2016 Mar;111(3):535-44. doi: 10.1111/add.13183. Epub 2015 Nov 11.
2
Electronic cigarette solutions and resultant aerosol profiles.
J Chromatogr A. 2015 Oct 30;1418:192-199. doi: 10.1016/j.chroma.2015.09.034. Epub 2015 Sep 15.
3
4
Free-Base and Protonated Nicotine in Electronic Cigarette Liquids and Aerosols.
Chem Res Toxicol. 2015 Aug 17;28(8):1532-7. doi: 10.1021/acs.chemrestox.5b00107. Epub 2015 Jul 22.
5
Electronic Cigarette Topography in the Natural Environment.
PLoS One. 2015 Jun 8;10(6):e0129296. doi: 10.1371/journal.pone.0129296. eCollection 2015.
6
E-cigarettes generate high levels of aldehydes only in 'dry puff' conditions.
Addiction. 2015 Aug;110(8):1352-6. doi: 10.1111/add.12942. Epub 2015 May 20.
7
Tobacco use among middle and high school students - United States, 2011-2014.
MMWR Morb Mortal Wkly Rep. 2015 Apr 17;64(14):381-5.
8
Hidden formaldehyde in e-cigarette aerosols.
N Engl J Med. 2015 Jan 22;372(4):392-4. doi: 10.1056/NEJMc1413069.
10
Trends in awareness and use of electronic cigarettes among US adults, 2010-2013.
Nicotine Tob Res. 2015 Feb;17(2):219-27. doi: 10.1093/ntr/ntu191. Epub 2014 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验