Suppr超能文献

大鼠近端肾小管和髓袢的数学模型。

A mathematical model of rat proximal tubule and loop of Henle.

作者信息

Weinstein Alan M

机构信息

Department of Physiology and Biophysics, Department of Medicine, Weill Medical College of Cornell University, New York, New York

出版信息

Am J Physiol Renal Physiol. 2015 May 15;308(10):F1076-97. doi: 10.1152/ajprenal.00504.2014. Epub 2015 Feb 18.

Abstract

Proximal tubule and loop of Henle function are coupled, with proximal transport determining loop fluid composition, and loop transport modulating glomerular filtration via tubuloglomerular feedback (TGF). To examine this interaction, we begin with published models of the superficial rat proximal convoluted tubule (PCT; including flow-dependent transport in a compliant tubule), and the rat thick ascending Henle limb (AHL). Transport parameters for this PCT are scaled down to represent the proximal straight tubule (PST), which is connected to the thick AHL via a short descending limb. Transport parameters for superficial PCT and PST are scaled up for a juxtamedullary nephron, and connected to AHL via outer and inner medullary descending limbs, and inner medullary thin AHL. Medullary interstitial solute concentrations are specified. End-AHL hydrostatic pressure is determined by distal nephron flow resistance, and the TGF signal is represented as a linear function of end-AHL cytosolic Cl concentration. These two distal conditions required iterative solution of the model. Model calculations capture inner medullary countercurrent flux of urea, and also suggest the presence of an outer medullary countercurrent flux of ammonia, with reabsorption in AHL and secretion in PST. For a realistically strong TGF signal, there is the expected homeostatic impact on distal flows, and in addition, a homeostatic effect on proximal tubule pressure. The model glycosuria threshold is compatible with rat data, and predicted glucose excretion with selective 1Na(+):1glucose cotransporter (SGLT2) inhibition comports with observations in the mouse. Model calculations suggest that enhanced proximal tubule Na(+) reabsorption during hyperglycemia is sufficient to activate TGF and contribute to diabetic hyperfiltration.

摘要

近端小管和亨利氏袢的功能相互关联,近端转运决定袢内液体成分,而袢的转运则通过管球反馈(TGF)调节肾小球滤过。为了研究这种相互作用,我们首先采用已发表的浅表性大鼠近端曲管(PCT;包括顺应性小管中的流量依赖性转运)和大鼠厚壁升支亨利氏袢(AHL)模型。该PCT的转运参数按比例缩小以代表近端直小管(PST),其通过短的降支与厚壁AHL相连。浅表PCT和PST的转运参数按比例放大以用于近髓肾单位,并通过外髓和内髓降支以及内髓细段AHL与AHL相连。确定髓质间质溶质浓度。AHL末端的静水压力由远端肾单位的流动阻力决定,TGF信号表示为AHL末端细胞质Cl浓度的线性函数。这两个远端条件需要对模型进行迭代求解。模型计算捕捉到了尿素的内髓逆流,还提示存在氨的外髓逆流,在AHL中重吸收而在PST中分泌。对于实际较强的TGF信号,对远端流量有预期的稳态影响,此外,对近端小管压力也有稳态作用。模型的糖尿阈值与大鼠数据相符,并且预测的选择性1Na(+):1葡萄糖共转运体(SGLT2)抑制后的葡萄糖排泄与小鼠中的观察结果一致。模型计算表明,高血糖期间近端小管Na(+)重吸收增强足以激活TGF并导致糖尿病性超滤。

相似文献

1
A mathematical model of rat proximal tubule and loop of Henle.大鼠近端肾小管和髓袢的数学模型。
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1076-97. doi: 10.1152/ajprenal.00504.2014. Epub 2015 Feb 18.
2
A mathematical model of the rat nephron: glucose transport.大鼠肾单位的数学模型:葡萄糖转运
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1098-118. doi: 10.1152/ajprenal.00505.2014. Epub 2015 Feb 18.
4
Tubuloglomerular feedback signal transduction in a short loop of henle.Henle 短袢中的管球反馈信号转导
Bull Math Biol. 2010 Jan;72(1):34-62. doi: 10.1007/s11538-009-9436-4. Epub 2009 Aug 6.
10
A mathematical model of the rat kidney. IV. Whole kidney response to hyperkalemia.大鼠肾脏的数学模型。四、肾脏整体对高钾血症的反应。
Am J Physiol Renal Physiol. 2022 Feb 1;322(2):F225-F244. doi: 10.1152/ajprenal.00413.2021. Epub 2022 Jan 10.

引用本文的文献

1
High dietary K intake inhibits proximal tubule transport.高钾饮食抑制近端肾小管转运。
Am J Physiol Renal Physiol. 2023 Aug 1;325(2):F224-F234. doi: 10.1152/ajprenal.00013.2023. Epub 2023 Jun 15.
4
A mathematical model of the rat kidney. IV. Whole kidney response to hyperkalemia.大鼠肾脏的数学模型。四、肾脏整体对高钾血症的反应。
Am J Physiol Renal Physiol. 2022 Feb 1;322(2):F225-F244. doi: 10.1152/ajprenal.00413.2021. Epub 2022 Jan 10.
5
A mathematical model of the rat kidney. III. Ammonia transport.大鼠肾脏数学模型。III. 氨转运。
Am J Physiol Renal Physiol. 2021 Jun 1;320(6):F1059-F1079. doi: 10.1152/ajprenal.00008.2021. Epub 2021 Mar 29.
8
A mathematical model of the rat kidney. II. Antidiuresis.大鼠肾脏的数学模型。二、抗利尿作用。
Am J Physiol Renal Physiol. 2020 Apr 1;318(4):F936-F955. doi: 10.1152/ajprenal.00046.2020. Epub 2020 Feb 24.
10
Regulation of renal Na transporters in response to dietary K.膳食钾对肾脏钠转运体的调节。
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F1032-F1041. doi: 10.1152/ajprenal.00117.2018. Epub 2018 Jun 20.

本文引用的文献

7
Potassium excretion during antinatriuresis: perspective from a distal nephron model.抗利钠尿时的钾排泄:来自远端肾单位模型的观点。
Am J Physiol Renal Physiol. 2012 Mar 15;302(6):F658-73. doi: 10.1152/ajprenal.00528.2011. Epub 2011 Nov 23.
8
The proximal tubule in the pathophysiology of the diabetic kidney.糖尿病肾脏病理生理学中的近端肾小管。
Am J Physiol Regul Integr Comp Physiol. 2011 May;300(5):R1009-22. doi: 10.1152/ajpregu.00809.2010. Epub 2011 Jan 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验