Layton Anita T, Vallon Volker, Edwards Aurélie
Department of Mathematics, Duke University, Durham, North Carolina;
Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, California, and San Diego Veterans Affairs Healthcare System, San Diego, California; and.
Am J Physiol Renal Physiol. 2016 Jun 1;310(11):F1269-83. doi: 10.1152/ajprenal.00543.2015. Epub 2016 Jan 13.
Diabetes increases the reabsorption of Na(+) (TNa) and glucose via the sodium-glucose cotransporter SGLT2 in the early proximal tubule (S1-S2 segments) of the renal cortex. SGLT2 inhibitors enhance glucose excretion and lower hyperglycemia in diabetes. We aimed to investigate how diabetes and SGLT2 inhibition affect TNa and sodium transport-dependent oxygen consumption [Formula: see text] along the whole nephron. To do so, we developed a mathematical model of water and solute transport from the Bowman space to the papillary tip of a superficial nephron of the rat kidney. Model simulations indicate that, in the nondiabetic kidney, acute and chronic SGLT2 inhibition enhances active TNa in all nephron segments, thereby raising [Formula: see text] by 5-12% in the cortex and medulla. Diabetes increases overall TNa and [Formula: see text] by ∼50 and 100%, mainly because it enhances glomerular filtration rate (GFR) and transport load. In diabetes, acute and chronic SGLT2 inhibition lowers [Formula: see text] in the cortex by ∼30%, due to GFR reduction that lowers proximal tubule active TNa, but raises [Formula: see text] in the medulla by ∼7%. In the medulla specifically, chronic SGLT2 inhibition is predicted to increase [Formula: see text] by 26% in late proximal tubules (S3 segments), by 2% in medullary thick ascending limbs (mTAL), and by 9 and 21% in outer and inner medullary collecting ducts (OMCD and IMCD), respectively. Additional blockade of SGLT1 in S3 segments enhances glucose excretion, reduces [Formula: see text] by 33% in S3 segments, and raises [Formula: see text] by <1% in mTAL, OMCD, and IMCD. In summary, the model predicts that SGLT2 blockade in diabetes lowers cortical [Formula: see text] and raises medullary [Formula: see text], particularly in S3 segments.
糖尿病会增加肾皮质近端小管早期(S1 - S2段)通过钠 - 葡萄糖协同转运蛋白SGLT2对Na⁺(TNa)和葡萄糖的重吸收。SGLT2抑制剂可促进糖尿病患者的葡萄糖排泄并降低高血糖水平。我们旨在研究糖尿病和SGLT2抑制如何影响整个肾单位的TNa以及钠转运依赖性氧消耗[公式:见原文]。为此,我们建立了一个从大鼠肾脏浅表肾单位的鲍曼囊到乳头尖端的水和溶质转运的数学模型。模型模拟表明,在非糖尿病肾脏中,急性和慢性SGLT2抑制会增强所有肾单位段的主动TNa,从而使皮质和髓质中的[公式:见原文]升高5% - 12%。糖尿病会使总体TNa和[公式:见原文]分别增加约50%和100%,主要是因为它提高了肾小球滤过率(GFR)和转运负荷。在糖尿病状态下,急性和慢性SGLT2抑制会使皮质中的[公式:见原文]降低约30%,这是由于GFR降低导致近端小管主动TNa减少,但会使髓质中的[公式:见原文]升高约7%。具体在髓质中,预计慢性SGLT2抑制会使近端小管晚期(S3段)的[公式:见原文]增加26%,髓质厚升支(mTAL)增加2%,外髓和内髓集合管(OMCD和IMCD)分别增加9%和21%。在S3段额外阻断SGLT1可促进葡萄糖排泄,使S3段的[公式:见原文]降低33%,并使mTAL、OMCD和IMCD中的[公式:见原文]升高不到1%。总之,该模型预测糖尿病中SGLT2阻断会降低皮质中的[公式:见原文]并升高髓质中的[公式:见原文],特别是在S3段。