Weinstein Alan M
Department of Physiology and Biophysics, Department of Medicine, Weill Medical College of Cornell University, New York, New York
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1098-118. doi: 10.1152/ajprenal.00505.2014. Epub 2015 Feb 18.
Mathematical models of the proximal tubule (PT), loop of Henle (LOH), and distal nephron have been combined to simulate transport by rat renal tubules. The ensemble is composed of 24,000 superficial (SF) nephrons and 12,000 juxtamedullary (JM) nephrons in 5 classes (according to LOH length); all coalesce into 7,200 connecting tubules (CNT). Medullary interstitial solute concentrations are specified. The model equations require that each nephron glomerular filtration rate (GFR) satisfies a tubuloglomerular feedback (TGF) relationship, and each initial hydrostatic pressure yields a common CNT pressure; that common CNT pressure is determined from an overall distal hydraulic resistance to flow. By virtue of the greater GFR for JM nephrons, fluid delivery to SF and JM tubules is comparable. Glucose reabsorption is restricted to the PT, cotransported with one Na in the convoluted tubule (SGLT2), and two Na in the straight tubule (SGLT1). Increasing ambient glucose from 5 to 10 mM increases proximal Na reabsorption and decreases distal delivery. This is mitigated by a TGF-mediated increase in GFR, and may thus be an etiology for TGF-mediated glomerular hyperfiltration. With SGLT2 inhibition by 95%, the model predicts that under normoglycemic conditions about 60% of filtered glucose will still be reabsorbed, so that profound glycosuria is not to be expected. Compared with glucose-driven osmotic diuresis, SGLT2 inhibition provokes greater natriuresis. When hyperglycemia is superimposed on SGLT2 inhibition, the model suggests that natriuresis may be severe, reflecting synergy of a proximal diuretic and osmotic diuresis. In sum, the model captures TGF-mediated diabetic hyperfiltration and predicts glomerular protection with SGLT2 inhibition.
近端小管(PT)、髓袢(LOH)和远端肾单位的数学模型已被整合,以模拟大鼠肾小管的转运过程。该集合由24,000个浅表(SF)肾单位和12,000个近髓(JM)肾单位组成,分为5类(根据髓袢长度);所有这些肾单位合并为7,200个连接小管(CNT)。髓质间质溶质浓度已明确设定。模型方程要求每个肾单位的肾小球滤过率(GFR)满足肾小管-肾小球反馈(TGF)关系,并且每个初始静水压力产生一个共同的CNT压力;该共同的CNT压力由远端总水力阻力决定。由于JM肾单位的GFR更高,因此向SF和JM小管的液体输送量相当。葡萄糖重吸收仅限于近端小管,在曲管中与一个Na共转运(SGLT2),在直小管中与两个Na共转运(SGLT1)。将环境葡萄糖浓度从5 mM增加到10 mM会增加近端Na重吸收并减少远端输送。这通过TGF介导的GFR增加得到缓解,因此可能是TGF介导的肾小球超滤的一个病因。当SGLT2被抑制95%时,模型预测在正常血糖条件下,约60%的滤过葡萄糖仍将被重吸收,因此不会出现严重的糖尿。与葡萄糖驱动的渗透性利尿相比,SGLT2抑制会引发更大的利钠作用。当高血糖叠加在SGLT2抑制上时,模型表明利钠作用可能会很严重,这反映了近端利尿剂和渗透性利尿的协同作用。总之,该模型捕捉到了TGF介导的糖尿病超滤现象,并预测了SGLT2抑制对肾小球的保护作用。