Suppr超能文献

磷酸泛素在帕金森蛋白E3激活中的双重功能

Dual Function of Phosphoubiquitin in E3 Activation of Parkin.

作者信息

Walinda Erik, Morimoto Daichi, Sugase Kenji, Shirakawa Masahiro

机构信息

From the Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501 and.

the Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.

出版信息

J Biol Chem. 2016 Aug 5;291(32):16879-91. doi: 10.1074/jbc.M116.728600. Epub 2016 Jun 9.

Abstract

Mutations in the gene encoding parkin, an auto-inhibited E3 ubiquitin ligase that functions in the clearance of damaged mitochondria, are the most common cause of autosomal recessive juvenile Parkinsonism. The mechanism regulating parkin activation remains poorly understood. Here we show, by using isothermal titration calorimetry, solution NMR, and fluorescence spectroscopy, that parkin can bind ubiquitin and phosphomimetic ubiquitin by recognizing the canonical hydrophobic patch and C terminus of ubiquitin. The affinity of parkin for both phosphomimetic and unmodified ubiquitin is markedly enhanced upon removal of the ubiquitin-like (UBL) domain of parkin. This suggests that the agonistic binding of ubiquitin to parkin in trans is counterbalanced by the antagonistic activity of the parkin UBL domain in cis Intriguingly, UBL binding is enthalpy-driven, whereas ubiquitin binding is driven by an increase in the total entropy of the system. These thermodynamic differences are explained by different chemistry in the ubiquitin- and UBL-binding pockets of parkin and, as shown by molecular dynamics simulations, are not a consequence of changes in protein conformational entropy. Indeed, comparison of conformational fluctuations reveals that the RING1-IBR element becomes considerably more rigid upon complex formation. A model of parkin activation is proposed in which E2∼Ub binding triggers large scale diffusional motion of the RING2 domain toward the ubiquitin-stabilized RING1-IBR assembly to complete formation of the active parkin-E2∼Ub transfer complex. Thus, ubiquitin plays a dual role in parkin activation by competing with the inhibitory UBL domain and stabilizing the active form of parkin.

摘要

编码帕金蛋白(一种在受损线粒体清除过程中发挥作用的自抑制E3泛素连接酶)的基因突变是常染色体隐性青少年帕金森症最常见的病因。目前对调节帕金蛋白激活的机制仍知之甚少。在这里,我们通过等温滴定量热法、溶液核磁共振和荧光光谱法表明,帕金蛋白可以通过识别泛素的典型疏水补丁和C末端来结合泛素和磷酸化模拟泛素。去除帕金蛋白的泛素样(UBL)结构域后,帕金蛋白对磷酸化模拟泛素和未修饰泛素的亲和力均显著增强。这表明泛素与帕金蛋白的反式激动结合被帕金蛋白UBL结构域的顺式拮抗活性所抵消。有趣的是,UBL结合是由焓驱动的,而泛素结合是由系统总熵的增加驱动的。这些热力学差异可以通过帕金蛋白的泛素结合口袋和UBL结合口袋中不同的化学性质来解释,并且如分子动力学模拟所示,这不是蛋白质构象熵变化的结果。事实上,构象波动的比较表明,RING1-IBR元件在形成复合物后变得更加刚性。我们提出了一个帕金蛋白激活模型,其中E2∼Ub结合触发RING2结构域向泛素稳定的RING1-IBR组装体的大规模扩散运动,以完成活性帕金蛋白-E2∼Ub转移复合物的形成。因此,泛素在帕金蛋白激活中发挥双重作用,通过与抑制性UBL结构域竞争并稳定帕金蛋白的活性形式。

相似文献

1
Dual Function of Phosphoubiquitin in E3 Activation of Parkin.
J Biol Chem. 2016 Aug 5;291(32):16879-91. doi: 10.1074/jbc.M116.728600. Epub 2016 Jun 9.
2
Synergistic recruitment of UbcH7~Ub and phosphorylated Ubl domain triggers parkin activation.
EMBO J. 2018 Dec 3;37(23). doi: 10.15252/embj.2018100014. Epub 2018 Nov 16.
3
Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity.
J Biol Chem. 2016 Jan 22;291(4):1803-1816. doi: 10.1074/jbc.M115.687319. Epub 2015 Dec 2.
4
Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis.
EMBO J. 2015 Oct 14;34(20):2506-21. doi: 10.15252/embj.201592337. Epub 2015 Aug 7.
5
Mechanism of phospho-ubiquitin-induced PARKIN activation.
Nature. 2015 Aug 20;524(7565):370-4. doi: 10.1038/nature14879. Epub 2015 Jul 10.
6
Impact of altered phosphorylation on loss of function of juvenile Parkinsonism-associated genetic variants of the E3 ligase parkin.
J Biol Chem. 2018 Apr 27;293(17):6337-6348. doi: 10.1074/jbc.RA117.000605. Epub 2018 Mar 12.
7
Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms.
EMBO Rep. 2016 Aug;17(8):1221-35. doi: 10.15252/embr.201642641. Epub 2016 Jun 16.
8
A Ubl/ubiquitin switch in the activation of Parkin.
EMBO J. 2015 Oct 14;34(20):2492-505. doi: 10.15252/embj.201592237. Epub 2015 Aug 7.
9
Structural analysis of the effects of mutations in Ubl domain of Parkin leading to Parkinson's disease.
Gene. 2020 Feb 5;726:144186. doi: 10.1016/j.gene.2019.144186. Epub 2019 Oct 21.

引用本文的文献

1
Solution structure of the HOIL-1L NZF domain reveals a conformational switch regulating linear ubiquitin affinity.
J Biol Chem. 2023 Sep;299(9):105165. doi: 10.1016/j.jbc.2023.105165. Epub 2023 Aug 16.
2
The Role of Mitophagy in Regulating Cell Death.
Oxid Med Cell Longev. 2021 May 18;2021:6617256. doi: 10.1155/2021/6617256. eCollection 2021.
3
Quantitative Middle-Down MS Analysis of Parkin-Mediated Ubiquitin Chain Assembly.
J Am Soc Mass Spectrom. 2020 May 6;31(5):1132-1139. doi: 10.1021/jasms.0c00058. Epub 2020 Apr 28.
4
PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson's disease.
Mol Neurodegener. 2020 Mar 13;15(1):20. doi: 10.1186/s13024-020-00367-7.
5
Autophagy in Parkinson's Disease.
J Mol Biol. 2020 Apr 3;432(8):2651-2672. doi: 10.1016/j.jmb.2020.01.037. Epub 2020 Feb 13.
6
Novel Compound Heterozygous Variants in a Han-Chinese Family with Early-Onset Parkinson's Disease.
Parkinsons Dis. 2019 Dec 23;2019:9024894. doi: 10.1155/2019/9024894. eCollection 2019.
8
Building and decoding ubiquitin chains for mitophagy.
Nat Rev Mol Cell Biol. 2018 Jan 23;19(2):93-108. doi: 10.1038/nrm.2017.129.
9
Molecular dynamics simulations of human E3 ubiquitin ligase Parkin.
Mol Med Rep. 2017 Oct;16(4):4561-4568. doi: 10.3892/mmr.2017.7140. Epub 2017 Aug 2.

本文引用的文献

1
Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation.
Nature. 2016 Jan 28;529(7587):546-50. doi: 10.1038/nature16511. Epub 2016 Jan 20.
2
A Ubl/ubiquitin switch in the activation of Parkin.
EMBO J. 2015 Oct 14;34(20):2492-505. doi: 10.15252/embj.201592237. Epub 2015 Aug 7.
3
Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis.
EMBO J. 2015 Oct 14;34(20):2506-21. doi: 10.15252/embj.201592337. Epub 2015 Aug 7.
4
Mechanism of phospho-ubiquitin-induced PARKIN activation.
Nature. 2015 Aug 20;524(7565):370-4. doi: 10.1038/nature14879. Epub 2015 Jul 10.
5
Phosphorylated ubiquitin chain is the genuine Parkin receptor.
J Cell Biol. 2015 Apr 13;209(1):111-28. doi: 10.1083/jcb.201410050. Epub 2015 Apr 6.
6
Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis.
EMBO J. 2015 Feb 3;34(3):307-25. doi: 10.15252/embj.201489847. Epub 2014 Dec 19.
7
Ubiquitin is phosphorylated by PINK1 to activate parkin.
Nature. 2014 Jun 5;510(7503):162-6. doi: 10.1038/nature13392. Epub 2014 Jun 4.
8
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity.
J Cell Biol. 2014 Apr 28;205(2):143-53. doi: 10.1083/jcb.201402104. Epub 2014 Apr 21.
9
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65.
Biochem J. 2014 May 15;460(1):127-39. doi: 10.1042/BJ20140334.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验