Verma Luxmi, Srivastava Sangeet, Negi P C
Department of Computer Science and Engineering, The NorthCap University, Gurgaon, India.
Department of Applied Sciences, The NorthCap University, Gurgaon, India.
J Med Syst. 2016 Jul;40(7):178. doi: 10.1007/s10916-016-0536-z. Epub 2016 Jun 11.
Coronary artery disease (CAD) is caused by atherosclerosis in coronary arteries and results in cardiac arrest and heart attack. For diagnosis of CAD, angiography is used which is a costly time consuming and highly technical invasive method. Researchers are, therefore, prompted for alternative methods such as machine learning algorithms that could use noninvasive clinical data for the disease diagnosis and assessing its severity. In this study, we present a novel hybrid method for CAD diagnosis, including risk factor identification using correlation based feature subset (CFS) selection with particle swam optimization (PSO) search method and K-means clustering algorithms. Supervised learning algorithms such as multi-layer perceptron (MLP), multinomial logistic regression (MLR), fuzzy unordered rule induction algorithm (FURIA) and C4.5 are then used to model CAD cases. We tested this approach on clinical data consisting of 26 features and 335 instances collected at the Department of Cardiology, Indira Gandhi Medical College, Shimla, India. MLR achieves highest prediction accuracy of 88.4 %.We tested this approach on benchmarked Cleaveland heart disease data as well. In this case also, MLR, outperforms other techniques. Proposed hybridized model improves the accuracy of classification algorithms from 8.3 % to 11.4 % for the Cleaveland data. The proposed method is, therefore, a promising tool for identification of CAD patients with improved prediction accuracy.
冠状动脉疾病(CAD)是由冠状动脉粥样硬化引起的,可导致心脏骤停和心脏病发作。对于CAD的诊断,使用的是血管造影术,这是一种昂贵、耗时且技术要求高的侵入性方法。因此,研究人员开始寻求替代方法,如机器学习算法,其可以使用非侵入性临床数据进行疾病诊断并评估其严重程度。在本研究中,我们提出了一种用于CAD诊断的新型混合方法,包括使用基于相关性的特征子集(CFS)选择与粒子群优化(PSO)搜索方法以及K均值聚类算法来识别风险因素。然后使用监督学习算法,如多层感知器(MLP)、多项逻辑回归(MLR)、模糊无序规则归纳算法(FURIA)和C4.5,对CAD病例进行建模。我们在由印度西姆拉英迪拉·甘地医学院心脏病学系收集的包含26个特征和335个实例的临床数据上测试了这种方法。MLR实现了最高88.4%的预测准确率。我们也在基准的克利夫兰心脏病数据上测试了这种方法。在这种情况下,MLR也优于其他技术。对于克利夫兰数据,所提出的混合模型将分类算法的准确率从8.3%提高到了11.4%。因此,所提出的方法是一种用于识别CAD患者且具有提高的预测准确率的有前景的工具。