Suppr超能文献

使用多模态和综合决策支持系统预测多个外科队列的术后心脏事件。

Prediction of postoperative cardiac events in multiple surgical cohorts using a multimodal and integrative decision support system.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.

Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Sci Rep. 2022 Jul 5;12(1):11347. doi: 10.1038/s41598-022-15496-w.

Abstract

Postoperative patients are at risk of life-threatening complications such as hemodynamic decompensation or arrhythmia. Automated detection of patients with such risks via a real-time clinical decision support system may provide opportunities for early and timely interventions that can significantly improve patient outcomes. We utilize multimodal features derived from digital signal processing techniques and tensor formation, as well as the electronic health record (EHR), to create machine learning models that predict the occurrence of several life-threatening complications up to 4 hours prior to the event. In order to ensure that our models are generalizable across different surgical cohorts, we trained the models on a cardiac surgery cohort and tested them on vascular and non-cardiac acute surgery cohorts. The best performing models achieved an area under the receiver operating characteristic curve (AUROC) of 0.94 on training and 0.94 and 0.82, respectively, on testing for the 0.5-hour interval. The AUROCs only slightly dropped to 0.93, 0.92, and 0.77, respectively, for the 4-hour interval. This study serves as a proof-of-concept that EHR data and physiologic waveform data can be combined to enable the early detection of postoperative deterioration events.

摘要

术后患者有发生危及生命的并发症的风险,如血流动力学失代偿或心律失常。通过实时临床决策支持系统自动检测有此类风险的患者,可能为早期及时干预提供机会,从而显著改善患者的预后。我们利用源自数字信号处理技术和张量形成的多模态特征,以及电子健康记录 (EHR),创建机器学习模型,可提前 4 小时预测几种危及生命的并发症的发生。为确保模型在不同手术队列中具有通用性,我们在心脏手术队列中对模型进行训练,并在血管和非心脏急性手术队列中对其进行测试。表现最佳的模型在训练时的接收者操作特征曲线下面积(AUROC)为 0.94,在测试时的 0.5 小时间隔的 AUROC 分别为 0.94 和 0.82。对于 4 小时间隔,AUROC 仅略有下降,分别为 0.93、0.92 和 0.77。本研究证明 EHR 数据和生理波形数据可以结合使用,从而实现术后恶化事件的早期检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae54/9256604/8e5fa4edca47/41598_2022_15496_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验