Fernandes Margarida M, Ivanova Kristina, Francesko Antonio, Rivera Diana, Torrent-Burgués Juan, Gedanken Aharon, Mendonza Ernest, Tzanov Tzanko
Grup de Biotecnologia Molecular i Industrial, Department d'Enginyeria Química, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, España.
Department of Chemistry, Institute of Nanotechnology and Advanced Materials, BarIlan University, Israel.
Nanomedicine. 2016 Oct;12(7):2061-2069. doi: 10.1016/j.nano.2016.05.018. Epub 2016 Jun 9.
The transformation of penicillin G into nano/micro-sized spheres (nanopenicillin) using sonochemical technology was explored as a novel tool for the eradication of Gram-negative bacteria and their biofilms. Known by its effectiveness only against Gram-positive microorganisms, the penicillin G spherization boosted the inhibition of the Gram-negative Pseudomonas aeruginosa 10-fold (from 0.3 to 3.0 log-reduction) and additionally induced 1.2 log-reduction of Escherichia coli growth. The efficient penetration of the spheres within a Langmuir monolayer sustained the theory that nanopenicillin is able to cross the membrane and reach the periplasmic space in Gram-negative bacteria where they inhibit the β-lactam targets: the transferases that build the bacteria cell wall. Moreover, it considerably suppressed the growth of both bacterial biofilms on a medically relevant polystyrene surface, leaving majority of the adhered cells dead compared to the treatment with the non-processed penicillin G. Importantly, nanopenicillin was found innocuous towards human fibroblasts at the antibacterial-effective concentrations.
利用声化学技术将青霉素G转化为纳米/微米级球体(纳米青霉素),作为一种根除革兰氏阴性菌及其生物膜的新工具进行了探索。青霉素G仅对革兰氏阳性微生物有效,其球化作用将对革兰氏阴性铜绿假单胞菌的抑制作用提高了10倍(从0.3对数减少提高到3.0对数减少),并额外使大肠杆菌的生长减少了1.2个对数。球体在朗缪尔单分子层内的有效渗透支持了纳米青霉素能够穿过膜并到达革兰氏阴性菌的周质空间的理论,在那里它们抑制β-内酰胺靶点:构建细菌细胞壁的转移酶。此外,它还显著抑制了医学相关聚苯乙烯表面上两种细菌生物膜的生长,与未处理的青霉素G处理相比,使大多数粘附细胞死亡。重要的是,在抗菌有效浓度下,纳米青霉素对人成纤维细胞无害。