Weitz Andrew J, Lee Jin Hyung
Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, CA 94305, USA.
Stem Cells Int. 2016;2016:8612751. doi: 10.1155/2016/8612751. Epub 2016 May 12.
Understanding how stem cell-derived neurons functionally integrate into the brain upon transplantation has been a long sought-after goal of regenerative medicine. However, methodological limitations have stood as a barrier, preventing key insight into this fundamental problem. A recently developed technology, termed optogenetic functional magnetic resonance imaging (ofMRI), offers a possible solution. By combining targeted activation of transplanted neurons with large-scale, noninvasive measurements of brain activity, ofMRI can directly visualize the effect of engrafted neurons firing on downstream regions. Importantly, this tool can be used to identify not only whether transplanted neurons have functionally integrated into the brain, but also which regions they influence and how. Furthermore, the precise control afforded over activation enables the input-output properties of engrafted neurons to be systematically studied. This review summarizes the efforts in stem cell biology and neuroimaging that made this development possible and outlines its potential applications for improving and optimizing stem cell-based therapies in the future.
了解干细胞衍生的神经元在移植后如何在功能上整合到大脑中一直是再生医学长期追求的目标。然而,方法上的局限性一直是一个障碍,阻碍了对这一基本问题的关键洞察。最近开发的一种技术,称为光遗传学功能磁共振成像(ofMRI),提供了一种可能的解决方案。通过将移植神经元的靶向激活与大脑活动的大规模、非侵入性测量相结合,ofMRI可以直接可视化植入神经元放电对下游区域的影响。重要的是,这个工具不仅可以用来确定移植的神经元是否在功能上整合到大脑中,还可以用来确定它们影响哪些区域以及如何影响。此外,对激活的精确控制能够系统地研究植入神经元的输入-输出特性。这篇综述总结了干细胞生物学和神经成像方面的努力,这些努力使这一进展成为可能,并概述了其在未来改进和优化基于干细胞的疗法方面的潜在应用。