Suppr超能文献

运用光遗传学功能磁共振成像的动态因果模型研究脑回路功能

Studying Brain Circuit Function with Dynamic Causal Modeling for Optogenetic fMRI.

作者信息

Bernal-Casas David, Lee Hyun Joo, Weitz Andrew J, Lee Jin Hyung

机构信息

Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA.

Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Neuron. 2017 Feb 8;93(3):522-532.e5. doi: 10.1016/j.neuron.2016.12.035. Epub 2017 Jan 26.

Abstract

Defining the large-scale behavior of brain circuits with cell type specificity is a major goal of neuroscience. However, neuronal circuit diagrams typically draw upon anatomical and electrophysiological measurements acquired in isolation. Consequently, a dynamic and cell-type-specific connectivity map has never been constructed from simultaneous measurements across the brain. Here, we introduce dynamic causal modeling (DCM) for optogenetic fMRI experiments-which uniquely allow cell-type-specific, brain-wide functional measurements-to parameterize the causal relationships among regions of a distributed brain network with cell type specificity. Strikingly, when applied to the brain-wide basal ganglia-thalamocortical network, DCM accurately reproduced the empirically observed time series, and the strongest connections were key connections of optogenetically stimulated pathways. We predict that quantitative and cell-type-specific descriptions of dynamic connectivity, as illustrated here, will empower novel systems-level understanding of neuronal circuit dynamics and facilitate the design of more effective neuromodulation therapies.

摘要

以细胞类型特异性定义脑回路的大规模行为是神经科学的一个主要目标。然而,神经元回路图通常借鉴孤立获得的解剖学和电生理测量结果。因此,从未通过全脑同步测量构建出动态的、细胞类型特异性的连接图谱。在此,我们为光遗传学功能磁共振成像实验引入动态因果模型(DCM)——它独特地允许进行细胞类型特异性的全脑功能测量——以用细胞类型特异性参数化分布式脑网络各区域之间的因果关系。引人注目的是,当应用于全脑基底神经节 - 丘脑皮质网络时,DCM准确地重现了经验观察到的时间序列,并且最强的连接是光遗传学刺激通路的关键连接。我们预测,如此处所示的对动态连接性的定量和细胞类型特异性描述,将使对神经元回路动力学有新的系统层面的理解,并有助于设计更有效的神经调节疗法。

相似文献

4
Large-scale neural models and dynamic causal modelling.大规模神经模型与动态因果建模。
Neuroimage. 2006 May 1;30(4):1243-54. doi: 10.1016/j.neuroimage.2005.11.007. Epub 2006 Jan 4.
6
Assessing thalamocortical functional connectivity with Granger causality.用格兰杰因果关系评估丘脑皮质功能连接。
IEEE Trans Neural Syst Rehabil Eng. 2013 Sep;21(5):725-733. doi: 10.1109/TNSRE.2013.2271246. Epub 2013 Jul 10.

引用本文的文献

1
Charting the path in rodent functional neuroimaging.绘制啮齿动物功能神经成像的路径。
Imaging Neurosci (Camb). 2025 May 28;3. doi: 10.1162/IMAG.a.12. eCollection 2025.
5
Peripheral contributions to resting state brain dynamics.外周对静息态脑动力学的贡献。
Nat Commun. 2024 Dec 30;15(1):10820. doi: 10.1038/s41467-024-55064-6.
6
Structurally informed models of directed brain connectivity.基于结构信息的定向脑连接模型。
Nat Rev Neurosci. 2025 Jan;26(1):23-41. doi: 10.1038/s41583-024-00881-3. Epub 2024 Dec 11.
7
Neuromodulation in Small Animal fMRI.小动物功能磁共振成像中的神经调节
J Magn Reson Imaging. 2025 Apr;61(4):1597-1617. doi: 10.1002/jmri.29575. Epub 2024 Sep 15.

本文引用的文献

6
Construct validation of a DCM for resting state fMRI.静息态功能磁共振成像中动态因果模型的结构效度验证。
Neuroimage. 2015 Feb 1;106:1-14. doi: 10.1016/j.neuroimage.2014.11.027. Epub 2014 Nov 21.
10
On nodes and modes in resting state fMRI.静息态功能磁共振成像中的节点与模式
Neuroimage. 2014 Oct 1;99:533-47. doi: 10.1016/j.neuroimage.2014.05.056. Epub 2014 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验