Suppr超能文献

高效仿生自主酶纳米步行者

Biomimetic Autonomous Enzymatic Nanowalker of High Fuel Efficiency.

机构信息

Department of Physics and ‡NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore 117542.

出版信息

ACS Nano. 2016 Jun 28;10(6):5882-90. doi: 10.1021/acsnano.6b01035. Epub 2016 Jun 17.

Abstract

Replicating efficient chemical energy utilization of biological nanomotors is one ultimate goal of nanotechnology and energy technology. Here, we report a rationally designed autonomous bipedal nanowalker made of DNA that achieves a fuel efficiency of less than two fuel molecules decomposed per productive forward step, hence breaking a general threshold for chemically powered machines invented to date. As a genuine enzymatic nanomotor without changing itself nor the track, the walker demonstrates a sustained motion on an extended double-stranded track at a speed comparable to previous burn-bridge motors. Like its biological counterparts, this artificial nanowalker realizes multiple chemomechanical gatings, especially a bias-generating product control unique to chemically powered nanomotors. This study yields rich insights into how pure physical effects facilitate harvest of chemical energy at the single-molecule level and provides a rarely available motor system for future development toward replicating the efficient, repeatable, automatic, and mechanistically sophisticated transportation seen in biomotor-based intracellular transport but beyond the capacity of the current burn-bridge motors.

摘要

复制生物纳米马达高效利用化学能量是纳米技术和能源技术的最终目标之一。在这里,我们报告了一种由 DNA 制成的自主双足纳米步行者,其燃料效率低于每一个产生产物的前进步骤分解两个燃料分子,从而打破了迄今为止发明的化学动力机器的一般阈值。作为一种真正的酶纳米马达,它不改变自身或轨道,在与以前的烧桥马达相当的速度下,在延伸的双链轨道上持续运动。与生物对应物一样,这种人工纳米步行者实现了多个化学机械门控,特别是化学动力纳米马达特有的产生偏置的产物控制。这项研究深入了解了纯粹的物理效应如何在单分子水平上促进化学能量的收集,并为未来发展提供了一个难得的马达系统,以复制基于生物马达的细胞内运输中看到的高效、可重复、自动和机制复杂的运输,但超出了当前烧桥马达的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验