LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, University of Bonn, Bonn, Germany.
Center of Advanced European Studies and Research (CAESAR), Bonn, Germany.
Nat Nanotechnol. 2018 Jun;13(6):496-503. doi: 10.1038/s41565-018-0109-z. Epub 2018 Apr 9.
Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor-stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.
生物马达是高度复杂的蛋白质组装体,它们利用化学能量产生线性或旋转运动。基于 DNA 纳米结构、生物混合设计或合成有机化学的合成马达已经被组装起来。然而,具有转子-定子单元的、消耗化学能量的单向旋转仿生轮式马达仍然难以捉摸。在这里,我们报告了一种由催化定子组成的生物混合纳米发动机,该定子单向旋转互锁 DNA 轮,由 NTP 水解提供动力。该发动机由附着在 dsDNA 纳米环上的工程化 T7 RNA 聚合酶 (T7RNAP-ZIF) 组成,该环与刚性旋转 dsDNA 轮键合。轮式发动机产生长而重复的 RNA 转录本,这些转录本附着在发动机上,并用于引导其沿着 DNA 纳米管上排列的预定 ssDNA 轨道移动。该设计的简单性使得这种行走纳米发动机能够适应其他生物纳米结构,从而方便构建实现 NTP 驱动运动的复杂生物混合结构。